A. Z. Al-garni, A. Jamal, A. M. Ahmad, A. M. Garni, and M. Tozan, Neural network-based failure rate prediction for De Havilland Dash-8 tires, Engineering Applications of Artificial Intelligence, vol.19, issue.6, pp.681-691, 2006.
DOI : 10.1016/j.engappai.2006.01.005

F. T. Bozbura, A. Beskese, J. P. Brans, and B. Mareschal, Prioritization of organizational capital measurement indicators using fuzzy AHP, Multiple Criteria Decision Analysis: State of the Art Surveys, pp.124-147, 2005.
DOI : 10.1016/j.ijar.2006.07.005

G. Buyukozkan, C. Kahraman, and D. Ruan, A fuzzy multi-criteria decision approach for software development strategy selection, International Journal of General Systems, vol.2, issue.2-3, pp.259-280, 2004.
DOI : 10.1016/S0377-2217(98)00331-2

A. C. Caputo and P. M. Pelagagge, An inverse approach for piping networks monitoring, Journal of Loss Prevention in the Process Industries, vol.15, issue.6, pp.497-505, 2002.
DOI : 10.1016/S0950-4230(02)00036-0

G. Cavory, R. Dupas, and G. Goncalves, A genetic approach to the scheduling of preventive maintenance tasks on a single product manufacturing production line, International Journal of Production Economics, vol.74, issue.1-3, pp.135-146, 2011.
DOI : 10.1016/S0925-5273(01)00120-7

F. E. Ciarapica and G. Giacchetta, Managing the condition-based maintenance of a combined-cycle power plant: An approach using soft computing techniques, Journal of Loss Prevention in the Process Industries, vol.19, issue.4, pp.316-325, 2006.
DOI : 10.1016/j.jlp.2005.07.018

D. Rp-g101, Risk Based Inspection of Offshore Topside Static Mechanical Equipment, Norway (2010) DNV RP O501 Recommended Practice DNV RP O501: Erosive Wear in Piping Systems. Det Norske Veritas (DNV), 2007.

P. K. Dey, Decision Support System for Inspection and Maintenance: A Case Study of Oil Pipelines, IEEE Transactions on Engineering Management, vol.51, issue.1, pp.47-56, 2004.
DOI : 10.1109/TEM.2003.822464

A. K. Jardine, D. Lin, and D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical Systems and Signal Processing, vol.20, issue.7, pp.1483-1510, 2006.
DOI : 10.1016/j.ymssp.2005.09.012

J. S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, vol.23, issue.3, pp.665-685, 1993.
DOI : 10.1109/21.256541

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1995.

J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao et al., Prognostics and health management design for rotary machinery systems???Reviews, methodology and applications, Mechanical Systems and Signal Processing, vol.42, issue.1-2, pp.314-334, 2014.
DOI : 10.1016/j.ymssp.2013.06.004

L. Medsker, Design and development of hybrid neural network and expert systems, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp.1470-1474, 1994.
DOI : 10.1109/ICNN.1994.374503

S. Nesic, H. Li, J. Huang, and D. Sormaz, An Open Source Mechanistic Model for CO2, NORSOK M-506 NORSOK Standard M-506: CO2 Corrosion Rate Calculation Model. Standards Norway, 2005.

D. V. Ramsamooj and T. A. Shugar, Modeling of corrosion fatigue in metals in an aggressive environment, International Journal of Fatigue, vol.23, pp.301-309, 2001.
DOI : 10.1016/S0142-1123(01)00139-6

R. M. Ratnayake, Challenges in Inspection Planning for Maintenance of Static Mechanical Equipment on Ageing Oil and Gas Production Plants: The State of the Art, Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium, pp.2011-49050, 2012.
DOI : 10.1115/OMAE2012-83248

R. M. Ratnayake, A decision model for executing plant strategy: maintaining the technical integrity of petroleum flowlines, International Journal of Decision Sciences, Risk and Management, vol.4, issue.1/2, pp.1-24, 2012.
DOI : 10.1504/IJDSRM.2012.046602

R. M. Ratnayake, Utilization of Piping Inspection Data for Continuous Improvement: A Methodology to Visualize Coverage and Finding Rates, Volume 3: Materials Technology; Ocean Space Utilization, 2013.
DOI : 10.1115/OMAE2013-10025

R. M. Ratnayake, Application of a fuzzy inference system for functional failure risk rank estimation: RBM of rotating equipment and instrumentation, Journal of Loss Prevention in the Process Industries, vol.29, pp.216-224, 2014.
DOI : 10.1016/j.jlp.2014.03.002

R. M. Ratnayake, KBE development for criticality classification of mechanical equipment: A fuzzy expert system, International Journal of Disaster Risk Reduction, vol.9, pp.84-98, 2014.
DOI : 10.1016/j.ijdrr.2014.04.004

R. M. Ratnayake and T. Markeset, Maintaining Technical Integrity of Petroleum Flow Lines on Offshore Installations: A Decision Support System for Inspection Planning, Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, 2010.

R. M. Ratnayake, S. M. Samarakoon, and T. Markeset, Maintenance Integrity: Managing Flange Inspections on Aging Offshore Production Facilities, Volume 3: Materials Technology; Jan Vugts Symposium on Design Methodology of Offshore Structures; Jo Pinkster Symposium on Second Order Wave Drift Forces on Floating Structures; Johan Wichers Symposium on Mooring of Floating Structures in Waves, pp.2011-4905010, 2011.
DOI : 10.1115/OMAE2011-49050

T. L. Satty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, 1980.

A. M. Seneviratne and R. M. Ratnayake, In-service inspection of static mechanical equipment: Use of a fuzzy inference system for maintaining the quality of an inspection program, 2013 IEEE International Conference on Industrial Engineering and Engineering Management, 2013.
DOI : 10.1109/IEEM.2013.6962674

M. Singh and T. Markeset, A methodology for risk-based inspection planning of oil and gas pipes based on fuzzy logic framework, Engineering Failure Analysis, vol.16, issue.7, pp.2098-2113, 2009.
DOI : 10.1016/j.engfailanal.2009.02.003

N. Sortrakul, H. L. Nachtmann, and C. R. Cassady, Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machine, Computers in Industry, vol.56, issue.2, pp.161-168, 2005.
DOI : 10.1016/j.compind.2004.06.005

D. Straub and M. H. Faber, Computational Aspects of Risk?Based Inspection Planning. Computer? Aided Civil and Infrastructure Eng, pp.179-192, 2006.

E. Triantaphyllou, Multi-Criteria Decision Making: A Comparative Study, p.320, 2000.
DOI : 10.1007/978-1-4757-3157-6

A. Valor, F. Caleyo, D. Rivas, and J. M. Hallen, Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel, Corrosion Science, vol.52, issue.3, pp.910-915, 2010.
DOI : 10.1016/j.corsci.2009.11.011

W. Wang, Modelling condition monitoring intervals: A hybrid of simulation and analytical approaches, Journal of the Operational Research Society, vol.51, issue.3, pp.273-282, 2003.
DOI : 10.1007/978-1-4471-0777-4_25

J. C. Walton, G. Cragnolino, and S. K. Kalandros, A numerical model of crevice corrosion for passive and active metals, Corrosion Science, vol.38, issue.1, pp.1-18, 1996.
DOI : 10.1016/0010-938X(96)00107-2

E. Zio, Prognostics and Health Management of Industrial Equipment Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, 2012.

D. Zhang, X. Bai, and K. Cai, Extended neuro-fuzzy models of multilayer perceptrons, Fuzzy Sets and Systems, vol.142, issue.2, pp.221-242, 2004.
DOI : 10.1016/S0165-0114(03)00244-6