
HAL Id: hal-01387267
https://inria.hal.science/hal-01387267

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Decentralized Approach for Efficient Simulation of Devs
Models

Romain Franceschini, Paul-Antoine Bisgambiglia

To cite this version:
Romain Franceschini, Paul-Antoine Bisgambiglia. Decentralized Approach for Efficient Simulation
of Devs Models. IFIP International Conference on Advances in Production Management Systems
(APMS), Sep 2014, Ajaccio, France. pp.336-343, �10.1007/978-3-662-44733-8_42�. �hal-01387267�

https://inria.hal.science/hal-01387267
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


DECENTRALIZED APPROACH FOR EFFICIENT
SIMULATION OF DEVS MODELS

Romain Franceschini, Paul-Antoine Bisgambiglia, and Paul Antoine Bisgambiglia

University of Corsica, UMR SPE 6134 CNRS, UMS Stella Mare 3460, TIC team, Campus
Grimaldi, 20250 Corti

{r.franceschini, bisgambiglia, bisgambi}@univ-corse.fr

Abstract. This paper proposes to improve simulation efficiency of DEVS mod-
els based on the classical Discrete Event system Specification (DEVS) formalism
by reducing the number of messages exchanged between simulators. We propose
three changes: hierarchical modeling tree flattening based on closure under cou-
pling, direct coupling and decentralized scheduling. The main idea is to relieve
coordinators by giving to simulators more tasks to process.

1 INTRODUCTION

The study of production systems necessitates the development of specific tools. Dis-
crete EVent system Specification formalism [Zeigler et al., 2000] is an expressive, open
and flexible formalism that can be extended. Recent studies [Vangheluwe, 2000, Zei-
gler, 2003], have shown that DEVS formalism may be called multi-formalism because,
due to its open nature, it allows the encapsulation of other modeling formalisms to meet
specific applications requirements. From a performance perspective, the formalism can
be improved as it does not scale well with a large number of models to simulate. At
hardware level, it is possible to scale vertically by increasing power of machines, and
horizontally by parallelizing [Chow and Zeigler, 1994] simulations, with a cost [Bal-
akrishnan et al., 1997, Chow et al., 1994, Glinsky and Wainer, 2006]. At software level,
we can work on algorithms efficiency by reducing their complexity.

In the DEVS formalism, the model hierarchy suggests that each evolution of a
model state can produce a message, which traverse all the hierarchy up to the root
of the tree. The number of messages is therefore proportional to the output of the mod-
els, the number of models, and the level of the hierarchy. In certain cases, this can
affect and raise simulation execution time. Previous works already proposed differ-
ent approaches to improves simulation efficiency. We can cite: parallelization approach
[Chow et al., 1994, Balakrishnan et al., 1997, Kim et al., 2000, Glinsky and Wainer,
2006, Zacharewicz and Hamri, 2007, Jafer and Wainer, 2009]; distribution [Kim et al.,
2000, Liu, 2006, Zacharewicz and Hamri, 2007]; and software approaches. These last
approaches improve simulation time by getting rid of the hierarchical structure [Jafer
and Wainer, 2010, Jafer and Wainer, 2009, Lowry et al., 2000, Zacharewicz and Hamri,
2007], and suggests to use direct coupling between models [Chen and Vangheluwe,
2010, Muzy and Nutaro, 2005]. The purpose of this article is to propose modifications
to the simulation algorithms to reduce significantly the number of exchanged messages
between components.



Currently, our approach is based on the classical DEVS formalism. The rest of the
paper is organized as follows: first part, we present the DEVS formalism. In the second
part, we detail the modifications we introduce to the classical DEVS formalism. In the
last part, we present simulation results using our “decentralized” simulation approach.

2 BACKGROUND

DEVS [Zeigler, 2003] allows representing any system whose input/output behavior can
be described with a sequence of events. It allows defining hierarchical modular mod-
els with two distinct types: atomic (behavioral) and coupled (structural) models. The
first describes the autonomous behavior of a discrete-event system; the last one is com-
posed of sub-models, each of them being an atomic or a coupled model. Formally, an
atomic model is described by: 〈X,Y, S, δint, δext, λ, ta〉, and a DEVS coupled model
is described by 〈X,Y,D, {Md | d ∈ D}, EIC,EOC, IC, Select〉.

We use the DEVS formalism because of its openness and extensibility. It offers both
a formal framework to define models and a flexible implementation in object-oriented
programming. It allows modeling all types of systems. In some cases, depending on
the system, the simulation can be very time consuming. To explain the excess messages
must detail the simulation part [Jafer and Wainer, 2009]. There are many works that aim
to accelerate the simulation. We can cite [Glinsky and Wainer, 2006, Hu and Zeigler,
2004, Jafer and Wainer, 2009, Jafer et al., 2013, Lee and Kim, 2003, Liu and Wainer,
2012, Muzy and Nutaro, 2005, Wainer and Giambiasi, 2001, Zacharewicz et al., 2010].
Some of these solutions propose to flatten the hierarchy of models in order to reduce
communication overhead between models.

This is achieved by simplifying the underlying simulator structure, while keeping
the same model definition and preserving the separation between model and simula-
tor. There are two advantages to using a so-called flat structure: reduce exchanges of
messages and simplify the simulation tree. This simplification is often used to allow
parallelize or distributed simulations. These many works have shown that flat simula-
tors outperform hierarchical ones significantly. They have also showed that although
the hierarchical simulator presented in [Glinsky and Wainer, 2006, Zacharewicz et al.,
2010] reduced the number of messages by introducing two specialized DEVS coor-
dinators, the communication overhead was still high in some cases. Others propose
modifications simulation algorithms to parallelize and/or distribute computations (out-
source). We propose to improve the simulator structure to accelerate simulation time.
Our approach to accelerate simulations is not based on outsourcing the computations,
but on three items: flat structure, direct coupling and decentralized scheduling.

3 OUR APPROACH

The objective of this work is not to provide a comparison with other approaches that are
based on parallelization or distribution; we propose algorithms to improve the classical
DEVS formalism. The aim of our modifications is to simplify the DEVS formalism, in
order to make it more effective and faster. To reduce the number of exchanged messages



between DEVS components, we propose three changes while remaining in compliance
with the universal properties of DEVS, such as closure under coupling.

3.1 Local schedule

In order to avoid message overhead, we propose to avoid dispatching *-messages when
possible, which we will call local or decentralized schedule. The purpose of this modifi-
cation is to make the simulator more autonomous and to simplify the task of flat coordi-
nator. Right after processing an *-message, a simulator checks if it is the next scheduled
simulator by its parent and if there is no other simulator scheduled at the same time. If
so, then the simulator will keep control and process the new fictive *-message at its tn.

3.2 Direct coupling

Message generation in the DEVS formalism is caused by message routing, specifically
routing induced by the hierarchical structure of the formalism. For example, a compo-
nent C1 of level H2 cannot communicate directly with a component C2 of the same
level (H2). This is the case for all components. Messages must always be propagated
to the parent, in H1 or H0 level. This hierarchy is a source of communication too. The
fact of not being able to communicate directly with a component of the same level is
a problem. We propose to add a list of couplings in simulators as a state variable. The
simulators know their coupling, that is to say, the components to which they are con-
nected, and with whom they should communicate. This list of decentralized coupling
has been added to simulators.

3.3 Flattening architecture and direct connection

The hierarchy flattening, also called direct connection by [Chen and Vangheluwe, 2010],
is not new and has become a key to improve simulation time. The property of closure
under coupling demonstrated in [Zeigler et al., 2000] implies that any coupled DEVS
model offers the same behavior as a resultant atomic model, which allows to delete all
coupled models in the hierarchy. In the hierarchical structure proposed in the DEVS for-
malism, a root coordinator is placed on top with a coordinator just below (H0 level). To
flatten the simulation architecture, all the coordinators below the H0 level are deleted.
Other works already offer this mechanism [Jafer and Wainer, 2009, Zacharewicz and
Hamri, 2007], usually in order to parallelize and distribute the simulation. Our goal is to
make the simulator standalone by removing redundant communications. We still keep
the top-most coordinator, positioned just below the root. It gives an execution order to
simulators. It has a schedule with an event number equal to the number of simulators.
Now that we flattened the hierarchy, the top-most coordinator still coordinates its com-
ponents. A component that generates an y-message still pass by its parent, which could
be avoided with direct coupling.



3.4 Algorithms

We are now going to present algorithms for the modifications we propose, based on the
classical DEVS simulation algorithms defined in [Zeigler et al., 2000].

Decentralized simulator tend to reduce the number of messages generated during a
simulation in two different ways: (1) by allowing a simulator to communicate directly
another component of its parent whenever possible and (2) by keeping control of *-
messages whenever possible.

Listing 1.1. Decentralized simulator algorithm

1 variables:
2 indirect-couplings = all parent ICs where oport host == self and parent

EOC doesn’t include oport
3
4 when receive (*, t) message do
5 do
6 raise synchronisation error if t != tn
7
8 y = model.lambda()
9
10 for each (y, oport)
11 couplings = indirect-couplings(oport)
12 if couplings are empty and parent EOC doesn’t include oport
13 send (y, t) to parent
14 else if couplings are not empty
15 for each (iport, v) in couplings
16 send (x, t, v) to iport host
17 end
18 end
19 end
20
21 model.internal_transition()
22
23 tl = t
24 tn = t + model.ta()
25
26 t = tn
27 end while tn == parent.min_tn and parent.imminent.count < 2 and tn !=

end-of-simulation
28 end

We achieve direct coupling by introducing indirect couplings to the simulator vari-
ables. Indirect couplings represent the direct route to another component of the parent.
They are all IC of the parent involving one of the output port of the simulator model,
excluding output ports involved in a EOC of the parent coordinator. As Listing 1.1
shows, when an output is generated by the model, an y-message has to be dispatched
to the parent coordinator only if no indirect coupling exists and that the port is not in-
volved in a EOC. If that is not the case, an x-message is directly sent to each indirect
coupling recipient.



To avoid to return control from *-message, a simulator checks at the end of *-
message processing if it is the next scheduled message by its parent. Then, if it is the
only scheduled model at that time, it is not necessary to the parent to call the Select
method. In that case, the message time is set to the simulator tn and the *-message
processing starts again unless we reached the end of the simulation.

4 RESULTS

The suggested approach allows to reduce the complexity of the simulation algorithms.
We still have to demonstrate through some examples that this is expressed by a ma-
jor reduction of the number of messages exchanged. We propose to present the results
obtained with a [Wainer et al., 2011] benchmark. DEVStone allows to evaluate the per-
formance of DEVS-based simulators. It generates a suite of model with varied struc-
ture and behavior automatically. The test environment is based on a Intel(R) Core(TM)
i5-3210M CPU @ 2.50GHz, 8 GB (2 x DDR3 - 1600 MHz) of RAM, APPLE SSD
SM128E hard drive, running on OSX 10.9.3. Software used for the benchmarking is
DEVS-Ruby [Franceschini et al., 2014] (without C extensions enabled) running on the
Ruby 2.1.2 VM. DEVS-Ruby is a DEVS-based simulation framework implemented
with the Ruby language.

4.1 Simulation results

Table 1 shows the total number of exchanged messages along with the CPU time of a
simulation for each of the three approaches. The DEVstone model is parameterized with
a depth between 3 and 9, a width from 5 to 15, with HO models type, a δint transition
time of 1ms, and a δext transition time of 0.1ms.

Table 1. Number of exchanged messages and CPU time for each approach using DEVStone

Depth Width
Approach

Classic Flat Decentralized
Messages CPU time(s) Messages CPU time(s) Messages CPU time(s)

3
5 132 0.027517 90 0.027047 61 0.027517

10 359 0.07453 260 0.072432 161 0.071881
15 722 0.172698 530 0.170959 311 0.148885

6
5 333 0.060773 195 0.058662 133 0.0571

10 1043 0.177945 620 0.173918 383 0.198214
15 2183 0.4381 1295 0.375843 758 0.370906

9
5 588 0.09689 300 0.093082 205 0.091734

10 1952 0.285154 980 0.296403 605 0.276397
15 4148 0.648915 2060 0.709434 1205 0.609233

Results show a major drop of scheduled messages between flat simulations and
classic simulations. This is predictable because of all messages no longer sent to sub
coupled models since they have been deleted from the hierarchy. Those results are very



interesting but were already obtained by previous works on hierarchy flattening. How-
ever, decentralized simulation offers very encouraging results since we can observe
an additional message drop. We obtain this by reducing the number of scheduled *-
messages and by avoiding to each atomic model that produces an y-message to pass by
its parent coordinator by dispatching directly an x-message to the recipient.

Although we significantly reduce the number of messages and that CPU times
shows slightly better results with our approach, the difference is not as impressive as
the number of messages. In our case, this is due to the naiveness of the sorted list-
based scheduler which is used for now in DEVS-Ruby. Indeed, the hierarchy flattening
increase the number of atomic models to handle by the scheduler of the last present co-
ordinator. Moreover, the HO type of coupling in DEVStone involves many collisions,
which is a stress condition for the scheduler.

5 CONCLUSIONS

In this article, we presented an approach that aims to reduce the number of exchanged
messages in the classic DEVS formalism. To reduce the number of messages exchanged,
we propose to expand the role of simulators. Indeed, we propose three major changes
compared to classical DEVS formalism: direct coupling, flat structure and local sched-
ule. The goal is the decentralization of a number of tasks in order to make the simulators
more autonomous, and relieve coordinators. Through these modifications the universal
property of DEVS are preserved, and it is possible to couple a classical model with a
decentralized model.

The results obtained with our framework are good; the number of exchanged mes-
sages is reduced by a factor of two. For complex systems with many components such
as production systems, this method seems very interesting. As a future work, we plan
to work on the PDEVS formalism.

ACKNOWLEDGEMENTS

The present work was supported in part by the French Ministry of Research, the Corsi-
can Region and the CNRS.

References

Balakrishnan et al., 1997. Balakrishnan, V., Frey, P., Abu-Ghazaleh, N. B., and Wilsey, P. A.
(1997). A framework for performance analysis of parallel discrete event simulators. In Pro-
ceedings of the 29th Conference on Winter Simulation, WSC ’97, pages 429–436, Washington,
DC, USA. IEEE Computer Society.

Chen and Vangheluwe, 2010. Chen, B. and Vangheluwe, H. (2010). Symbolic flattening of
DEVS models. In Proceedings of the 2010 Summer Computer Simulation Conference, SCSC
’10, pages 209–218, San Diego, CA, USA. Society for Computer Simulation International.

Chow et al., 1994. Chow, A., Zeigler, B., and Kim, D. H. (1994). Abstract simulator for the par-
allel DEVS formalism. In , Proceedings of the Fifth Annual Conference on AI, Simulation, and
Planning in High Autonomy Systems, 1994. Distributed Interactive Simulation Environments,
pages 157–163.



Chow and Zeigler, 1994. Chow, A. C. H. and Zeigler, B. P. (1994). Parallel DEVS: a parallel,
hierarchical, modular, modeling formalism. In Proceedings of the 26th Conference on Winter
Simulation, WSC ’94, pages 716–722, San Diego, CA, USA. Society for Computer Simulation
International.

Franceschini et al., 2014. Franceschini, R., Bisgambiglia, P.-A., Bisgambiglia, P. A., and Hill,
D. R. (2014). DEVS-Ruby: a Domain Specific Language for DEVS Modeling and Simulation
(WIP). In DEVS 14: Proceedings of the Symposium on Theory of Modeling & Simulation -
DEVS Integrative M&S Symposium, pages 393–398. Society for Computer Simulation Interna-
tional.

Glinsky and Wainer, 2006. Glinsky, E. and Wainer, G. (2006). New parallel simulation tech-
niques of DEVS and cell-DEVS in CD++. In Proceedings of the 39th Annual Symposium on
Simulation, ANSS ’06, pages 244–251, Washington, DC, USA. IEEE Computer Society.

Hu and Zeigler, 2004. Hu, X. and Zeigler, B. P. (2004). A high performance simulation engine
for large-scale cellular DEVS models. In High Performance Computing Symposium (HPC’04),
pages 3–8.

Jafer et al., 2013. Jafer, S., Liu, Q., and Wainer, G. (2013). Synchronization methods in parallel
and distributed discrete-event simulation. Simulation Modelling Practice and Theory, 30:54–
73.

Jafer and Wainer, 2009. Jafer, S. and Wainer, G. (2009). Flattened conservative parallel simula-
tor for DEVS and CELL-DEVS. In International Conference on Computational Science and
Engineering, 2009. CSE ’09, volume 1, pages 443–448.

Jafer and Wainer, 2010. Jafer, S. and Wainer, G. (2010). Global lookahead management (GLM)
protocol for conservative DEVS simulation. In 2010 IEEE/ACM 14th International Symposium
on Distributed Simulation and Real Time Applications (DS-RT), pages 141–148.

Kim et al., 2000. Kim, K., Kang, W., Sagong, B., and Seo, H. (2000). Efficient distributed simu-
lation of hierarchical DEVS models: transforming model structure into a non-hierarchical one.
In Simulation Symposium, 2000. (SS 2000) Proceedings. 33rd Annual, pages 227–233.

Lee and Kim, 2003. Lee, W. B. and Kim, T. G. (2003). Simulation speedup for DEVS models
by composition-based compilation. In SCS, editor, Summer Computer Simulation Conference
- SCS, pages 395–400. SCS.

Liu, 2006. Liu, Q. (2006). Distributed Optimistic Simulation Of Devs And Cell-Devs Models
With Pcd++. PhD thesis.

Liu and Wainer, 2012. Liu, Q. and Wainer, G. (2012). Multicore acceleration of discrete event
system specification systems. SIMULATION, 88(7):801–831.

Lowry et al., 2000. Lowry, M. C., Ashenden, P. J., and Hawick, K. A. (2000). Distributed high-
performance simulation using time warp and java. Technical Report DHPC-084.

Muzy and Nutaro, 2005. Muzy, A. and Nutaro, J. J. (2005). Algorithms for efficient implemen-
tations of the DEVS & DSDEVS abstract simulators. pages 273–279.

Vangheluwe, 2000. Vangheluwe, H. (2000). DEVS as a common denominator for multi-
formalism hybrid systems modelling. In IEEE International Symposium on Computer-Aided
Control System Design, 2000. CACSD 2000, pages 129–134.

Wainer et al., 2011. Wainer, G., Glinsky, E., and Gutierrez-Alcaraz, M. (2011). Studying per-
formance of DEVS modeling and simulation environments using the DEVStone benchmark.
SIMULATION, 87(7):555–580.

Wainer and Giambiasi, 2001. Wainer, G. A. and Giambiasi, N. (2001). Application of the cell-
DEVS paradigm for cell spaces modelling and simulation. SIMULATION, 76(1):22–39.

Zacharewicz and Hamri, 2007. Zacharewicz, G. and Hamri, M. E.-A. (2007). Flattening g-
DEVS / HLA structure for distributed simulation of workflows. In Proceedings of AIS-CMS
International modeling and simulation multiconference, pages 11–16, Buenos Aires, Argen-
tine.



Zacharewicz et al., 2010. Zacharewicz, G., Hamri, M. E.-A., Frydman, C., and Giambiasi, N.
(2010). A generalized discrete event system (g-DEVS) flattened simulation structure: Ap-
plication to high-level architecture (HLA) compliant simulation of workflow. SIMULATION,
86(3):181–197.

Zeigler, 2003. Zeigler, B. (2003). DEVS today: recent advances in discrete event-based infor-
mation technology. In 11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003, pages 148–161.

Zeigler et al., 2000. Zeigler, B. P., Kim, T. G., and Praehofer, H. (2000). Theory of Modeling
and Simulation. Academic Press, Inc., Orlando, FL, USA, 2nd edition.


	DECENTRALIZED APPROACH FOR EFFICIENT SIMULATION OF DEVS MODELS

