DOLPHIn - Dictionary Learning for Phase Retrieval

Abstract : We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal—possibly corrupted by noise—and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such " hidden " sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2016, 64 (24), pp.6485-6500. <http://ieeexplore.ieee.org/document/7563347/>. <10.1109/TSP.2016.2607180>
Liste complète des métadonnées


https://hal.inria.fr/hal-01387428
Contributeur : Julien Mairal <>
Soumis le : mardi 25 octobre 2016 - 15:25:48
Dernière modification le : mardi 22 novembre 2016 - 13:59:34

Fichier

DOLPHIn.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Andreas Tillmann, Yonina Eldar, Julien Mairal. DOLPHIn - Dictionary Learning for Phase Retrieval. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2016, 64 (24), pp.6485-6500. <http://ieeexplore.ieee.org/document/7563347/>. <10.1109/TSP.2016.2607180>. <hal-01387428>

Partager

Métriques

Consultations de
la notice

327

Téléchargements du document

148