Abstract : Most high-performance, scientific libraries have adopted hybrid parallelization schemes - such as the popular MPI+OpenMP hybridization - to benefit from the capacities of modern distributed-memory machines. While these approaches have shown to achieve high performance, they require a lot of effort to design and maintain sophisticated synchronization/communication strategies. On the other hand, task-based programming paradigms aim at delegating this burden to a runtime system for maximizing productivity. In this article, we assess the potential of task-based fast multipole methods (FMM) on clusters of multicore processors. We propose both a hybrid MPI+task FMM parallelization and a pure task-based parallelization where the MPI communications are implicitly handled by the runtime system. The latter approach yields a very compact code following a sequential task-based programming model. We show that task-based approaches can compete with a hybrid MPI+OpenMP highly optimized code and that furthermore the compact task-based scheme fully matches the performance of the sophisticated, hybrid MPI+task version, ensuring performance while maximizing productivity. We illustrate our discussion with the ScalFMM FMM library and the StarPU runtime system.
Résumé : La plupart des bibliothèques scientifiques très performantes ont adopté des parallélisations hybrides - comme l’approche MPI+OpenMP - pour profiter des capacités des machines modernes à mémoire distribuée. Ces approches permettent d’obtenir de très hautes performances, mais elles nécessitent beaucoup d’efforts pour concevoir et pour maintenir des stratégies de synchronisation/communication sophistiquées. D’un autre côté, les paradigmes de programmation à base de tâches visent à déléguer ce fardeau à un moteur d'exécution pour maximiser la productivité. Dans cet article, nous évaluons le potentiel de la méthode des multipôles rapide (FMM) à base de tâches sur les clusters de processeurs multic\oe{}urs. Nous proposons deux types de parallélisation, une première approche hybride (MPI+Tâche) à base de tâches et d’appels à MPI pour gérer explicitement les communications et la deuxième uniquement à base de tâches où les communications MPI sont implicitement postées par le moteur d'exécution. Cette dernière approche conduit à un code très compact qui suit le modèle de programmation séquentiel à base de tâches. Nous montrons que cette approche rivalise avec le code hybride MPI+OpenMP fortement optimisé et qu'en outre le code compact atteint les performances de la version hybride MPI+Tâche, assurant une très haute performance tout en maximisant la productivité. Nous illustrons notre propos avec la bibliothèque FMM ScalFMM et le moteur d'exécution StarPU.