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Abstract. Research on semantics in Genetic Programming (GP) has in-
creased dramatically over the last number of years. Results in this area
clearly indicate that its use in GP can considerably increase GP perfor-
mance. Motivated by these results, this paper investigates for the �rst
time the use of Semantics in Muti-Objective GP, within the well -known
NSGA-II algorithm. To this end, we propose two forms of incorp orating
semantics into a MOGP system. Results on challenging (highly) un bal-
anced binary classi�cation tasks indicate that the adoption of semantics
in MOGP is bene�cial, in particular when a semantic distance is incor-
porated into the core of NSGA-II.

1 Introduction

Genetic Programming (GP) [9] has been successfully used in arange of di�erent
challenging problems (see Koza's article on human competitive results for a
comprehensive review [10]). Despite its proven success, italso su�ers from some
limitations and researchers have been interested in makingGP more robust by
studying various elements of the search process, and also, by e.g., considering
other GP forms [7].

One of these elements that has relatively recently attracted the attention of
researchers is the study of semantics in GP, resulting in a dramatic increase in
the number of related publications (e.g., [2, 8, 11, 13]).

Semantics is a broad concept that has been studied in di�erent �elds making
it hard to give a precise de�nition of the concept. Moreover, the way semantics
have been adopted in canonical GP varies signi�cantly e.g.,Beadle and John-
son [2] used reduced ordered binary decision trees on Boolean problems to study
semantics, whereas Uy's work on semantics has focused on repeatedly apply-
ing crossover to encourage semantic di�erence between parents and o�spring
(see [16] for a summary of works carried out in semantics).
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This work uses a popular version of semantics GP, as originally proposed in
[13], and used in recent works from the �rst author [8, 14], inwhich the semantics
of a (sub)tree is de�ned as the vector of output values computed by this (sub)tree
for each set of input values in turn (a.k.a. each �tness case in most cases). Several
semantic-based approaches have been proposed for GP which take semantics into
account when e.g., choosing and modifying subtrees, such asthe one that has
been demonstrated bene�cial in [14] and it is adopted too in this work.

To the best of our knowledge, however, there is no scienti�c study on the
adoption of semantics in Evolutionary Multi-Objective Opt imisation at large [5],
and in Multi-objective GP in particular, and this paper inte nds to start �lling
this important research area.

The goal of this paper is to incorporate semantics into a Multi-Objective
GP paradigm by using the well-known NSGA-II. To this end, we studied two
di�erent forms of incorporating semantics into NSGA-II: (a ) one based on a
relatively simple, e�cient and straightforward semantic- based single-objective
GP approach, and (b) one based on the adoption of a semantic distance into the
core of the NSGA-II algorithm.

This paper is organised as follows. In Section 2, we introduce our proposed
approaches. Section 3 provides details on the experimentalsetup used. The re-
sults presented in this paper are discussed in Section 4, and�nally, conclusions
and future work are drawn in Section 5.

2 Semantics in Multi-Objective Genetic Programming

As indicated in Section 1, following [13], thesemantics of a GP tree describes
the behavior of the tree when various values are given to the input variables.
In the case of a �tness based on the computation of several �tness cases, the
semantics of a GP individual is a vector of size the number of �tness cases, one
value for each �tness case. For instance, in the case of the problems used in
this work (unbalanced data sets introduced in Section 3), the semantics of a GP
individual is the vector of real-valued outputs of the tree for each of the total
examples in the data set. In this work, the semantic distancebetween two trees
is the number of outputs that are di�erent between their semantics. Commonly,
when computing the semantic distance, two outputs are considered di�erent if
their absolute di�erence is greater than a given threshold [8, 14]. In this work,
we set the threshold at 0.5. It is clear that two trees can be syntactically very
di�erent while behaving identically. What matters, as far a s solving the problem
at hand, is in fact the behavior of a tree: its response to given input values.
These arguments support the use of semantics, and at least, partly explain the
bene�ts of using semantics in GP as reported in [8, 14].

2.1 Evolutionary Multi-Objective Optimisation

Multi-objective optimisation (MO) is concerned with the si multaneous optimi-
sation of several objectives. When these are in con
ict, no single solution exists,
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and trade-o�s between the objectives must be sought. The optimal trade-o�s are
the solutions for which no objective can be further improvedwithout degrading
another objective. This idea is captured in the Pareto dominance relation: a
point x in the search space is said toPareto-dominate another point y if x is at
least as good asy on all objectives and strictly better on at least one objective.

The set of optimal trade-o� solutions of a MO problem can then be de�ned
as the set of points of the search space that are not dominatedby any other
point, and is called the Pareto set of the problem at hand. The goal of Pareto
MO is to identify the Pareto set, or a good approximation of it. The Pareto front
is the image of the Pareto set in the objective space.

Evolutionary multi-objective optimisation (EMO) [5] is ba sed on the follow-
ing: by replacing the single-objective selection steps, based on the comparison
of �tness values, by some Pareto-based comparison, one turns a single-objective
evolutionary optimisation algorithm into a multi-objecti ve evolutionary opti-
mization algorithm, but because Pareto dominance is not a total order, some
additional criterion must be added to Pareto dominance so asto allow the com-
parison of any pair of points of the search space.

In NSGA-II [6], the Pareto-based comparison uses the non-dominated sorting
procedure: all non-dominated individuals in the population are assigned Rank
1 and excluded from this comparison, the remaining non-dominated individuals
are assigned Rank 2, and so on. The secondary criterion is thecrowding distance
that promotes diversity among the individuals having the same Pareto rank:
in objective space, for each objective, the individuals in the population are or-
dered, and the partial crowding distance for each of them is the di�erence in
�tness between its immediate neighbours. The crowding distance is the sum of
these partial crowding distances for all objectives. Intuitively, it can be seen as
the Manhattan distance between the extremal vertices of thelargest hypercube
containing the point at hand and no other point of the populat ion. Selecting
points with the largest crowding distance amounts to favour the low-density
regions of the objective space, thus favouring behaviouraldiversity.

The NSGA-II proceeds as follows. From a given population of size N , N o�-
spring are created using standard variation operators (crossover and mutation).
Parents and o�spring are merged, and the resulting population, of size 2N , is
ordered using non-dominated sorting and crowding distance, as explained above.
The best N according to this ranking are selected to survive at next generation.

Because the underlying idea within NSGA-II is to favour behavioral diversity,
but only considering the �tness as a whole, it can be hoped that introducing
semantics in NSGA-II can only enforce this idea.

2.2 Incorporating Semantics in MOPG

In this work, we investigated two ways of incorporating semantics into a MOGP
system (recall we use NSGA-II). One natural form to do so is touse semantics as
commonly adopted in canonical GP (e.g., semantically-based crossover [14]). In
our study, we adopted the semantics in the selection tournament mechanism [8]
due to its simplicity and e�ciency. Brie
y, the idea is to cre ate o�spring that are
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semantically di�erent from their parents when tournament selection is applied:
the �rst parent is selected as usual and the second parent is selected if it is
semantically di�erent and �tter than the already selected p arent, if this is not
satis�ed for any individual in the pool, one is chosen at random. We call this
NSGA-II Semantics in Selection (SiS).

The second proposed way to add semantics to NSGA-II is to replace the
crowding distance (see above) with a semantic-based indicator called Semantic-
based Crowding Distance (SCD). This is computed the following way: a pivot
is chosen, being the individual from the �rst Pareto front (r ank 1) that is the
furthest away from the other individuals of this front using the crowding distance.
For each point, its semantic distance with the pivot is computed. Similarly to the
crowding distance, the SCD is computed as the average of the semantic distance
di�erences with its closest neighbours in each direction. The higher values of this
SCD are favored during the selection step of NSGA-II. This allows us to have
a set of individuals that are spread in the semantic space, therefore, promoting
semantic diversity, the same way NSGA-II promotes diversity (`spreadness') in
the objective space. It is worth pointing out that this appro ach also works when
there is only one front. This variant of NSGA-II will be calle d Distance-based
Semantics (DBS) in the following.

3 MOGP Con�guration and Experimental Design

To study the e�ects of semantics in MOGP, we used challengingbinary (highly)
unbalanced classi�cation problems taken from the specialised literature [1]. These
problems are of di�erent nature and complexity (e.g., from a few number of fea-
tures up to dozens of them, and these include real, binary andinteger-value
features, from relatively low to highly unbalanced data). Table 1 shows the sizes
of both majority and minority classes for each of these problems along with de-
tails about the data used in our study. We used the data as `it is' (e.g., we did
not try to balance the classes out). We used half of each problem to train our
MOGP systems and the other half to test it.

To generate classi�ers via MOGP, we de�ned our terminal and function in
the same manner as in [3]. The terminal set consists of example features. The
function set consists of a conditionalif function and the typical four standard
arithmetic operators, and so, the function set is de�ned byF = f if; + ; � ; � ; =g,
where the latter operator is protected division, which returns the numerator if
the denominator is zero. Theif function takes three arguments: if the �rst is neg-
ative, the second argument is returned, otherwise the last argument is returned.
These functions are used to build a classi�er (e.g., mathematical expression)
that returns a single value for a given input (data example tobe classi�ed). This
number is mapped onto a set of class labels using zero as the class threshold.
In our studies, an example is assigned to the minority class if the output of the
classi�er is greater or equal to zero. It is assigned to the majority class, otherwise.

The common form to measure the �tness in classi�cation is theoverall clas-
si�cation accuracy: using the four outcomes for binary classi�cation shown in
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Table 1. Binary unbalanced classi�cation data sets used in our research. Table adapted
from [3].

Data set Classes Number of examples Imb. Features
Positive/Negative (Brief description) Total Positive Negat ive Ratio No. Type

Ion Good/bad (ionsphere radar signal) 351 126 (35.8%) 225 (64.2%) 1:3 34 Real
Spect Abnormal/normal (cardiac tom. scan) 267 55 (20.6%) 212 ( 79.4%) 1:4 22 Binary
Yeast1 mit/other (protein sequence) 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real
Yeast2 me3/other (protein sequence) 1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real

Table 2. Confusion Matrix.

Predicted object Predicted non-object

Actual object True Positive (TP) False Negative (FN)
Actual non-object False Positive (FP) True Negative (TN)

Table 2 and assuming the minority class is the positive class, we have that the
accuracy is given byAcc = T P + T N

T P + T N + F P + F N . The drawback with Acc is that it
can bias the evolutionary search towards the majority class[3]. As mentioned
also in [3], a better approach is to treat each objective (class) `separately' using
MOGP. To this end, we use in the �tness function of our MOGP the true positive
rate (T P R = T P

T P + F N ) and the true negative rate (T NR = T N
T N + F P ) to measure

the accuracy for the minority and majority class, respectively.
The experiments were conducted using a steady state approach with tourna-

ment selection (Size 2 for NSGA-II and NSGA-II DBS and Size 7 for NSGA-II
SiS to encourage semantic di�erence via this operator). We used the traditional
90/10 crossover operator and subtree mutation. To initialise our population and
to apply mutation, we used the ramped half-and-half method (initial and �nal
depth set at 1 and 5, respectively). To control bloat a maximum depth of 8 was
speci�ed (where root was considered of depth 0) or a maximum number of 800
nodes was used. Crossover and mutation rates were 60% and 40%, respectively.
To obtain meaningful results, we performed 50 independent runs for each of the
MOGP approaches for each of the problems used in this work.

4 Results and Discussion

4.1 Front Hyperarea

We computed the hyperarea or hypervolume [4] of the evolved Pareto-
approximated fronts as a measure to determine which MOGP paradigm is better
on the used tasks. The hyperarea is calculated by taking the sum of the areas of
individual trapezoids �tted under each front solution in ob jective-space. Thus,
the higher the value, the better the performance. Such measure was chosen be-
cause its popularity in the area as well as its theoretical foundations [12].

Table 3 reports the average hyperarea computed over all runsalong with
its standard deviation (� ). We also computed the Pareto-optimal (PO) front
with respect to all MOGP runs, i.e., the PO front is the set of non-dominated
solutions from all Pareto-approximated fronts evolved from 50 independent runs.
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Table 3. Average (� standard deviation) hyperarea, where the reference point is (0,0),
of evolved Pareto-approximated fronts, Pareto optimal (PO) f ront for the three MOGP
used in this work: NSGA-II, NSGA-II SiS and NSGA-II DBS, over 50 ru ns.

Methods Hyperarea Ion Spect Yeast1 Yeast2

NSGA-II
Average 0.842 � 0.070 0.542 � 0.024 0.822 � 0.041 0.944 � 0.021

PO Front 0.948 0.637 0.875 0.978

NSGA-II SiS
Average 0.858 � 0.063 0.542 � 0.020 0.827 � 0.035 0.939 � 0.048

PO Front 0.960 0.642 0.876 0.977

NSGA-II DBS
Average 0.856 � 0.051 0.548 � 0.026 0.827 � 0.015 0.948 � 0.011

PO Front 0.977 0.664 0.873 0.977

In Table 3, the better hyperarea (average and PO) is highlighted in bold-
face for each of the four problems used in this work. We computed the sta-
tistical signi�cance test on the average hyperarea using the common Wilcoxon
Test technique at 90% level of signi�cance independently comparing each of the
semantic-based approaches (NSGA-II SiS, NSGA-II DBS) against NSGA-II.

According to this table, in three out of the four problems, both semantic-
based MOGP approaches achieve a higher hyperarea of the PO front compared
to the NSGA-II. Moreover, the NSGA-II DBS is statistically b etter (indicated in
boldface) than the NSGA-II on two classi�cation problems and not statistically
di�erent on the remaining problems. Furthermore, NSGA-II S iS is not statisti-
cally di�erent on any of the problems compared to NSGA-II. Th is appears to
suggest that the adoption of semantics into a MOGP approach should be in one
of the pillars of the MO approach.

4.2 Evolved Solutions and Pareto-optimal Front

We now turn our attention on the accuracy achieved by all evolved solutions over
50 runs for each of the problems used in this work. Due to spaceconstraints and
for clarity purposes, we only show in Figure 1 accuracy values evolved by the
NSGA-II and the NSGA-II DBS. In some problems (e.g., Ion), it is relatively
easy to see how the NSGA-II DBS, shown in the centre of the �gure, is able
to �nd more unique values. To better interpret the results, we also show in the
right-hand of the �gure, the di�erence between those values exclusively found
either by NSGA-II or NSGA-II DBS. That is, for the NSGA-II, we plotted those
values that were not found by the NSGA-II DBS, and vice versa. NSGA-II DBS
(indicated by a blue cross `x' symbol) is able to �nd more values close to the
frontier side of all evolved solutions on Ion, Spect and Yeast1 problems compared
to NSGA-II (indicated by a red plus `+' symbol).

Figure 2 shows the Pareto fronts for each of the MOGP approaches used in
each of the problems employed in this work. As it can be seen, little di�erence is
observed among the three methods on the Yeast problems, which is in accordance
to the results reported in Table 3. The advantage of the semantic-based MOGP
approaches can be observed in the rest of the problems.
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4.3 Bloat

There are a mixture of reports that indicate that either semantics prevent bloat
(e.g., dramatic increase of programs' length without observing a correspond-
ing improvement in �tness) e.g., [8] or exacerbates it e.g., [15]. To shed some
light on this, we also plotted the average length of programsevolved by each
of the MOGP approaches on only two problems (Ion and Yeast2) due to space
constrains. This is shown in Figure 3.

As it can be seen from this �gure, it is clear that the semantic-based
approaches tend to produce slightly shorter programs compared to canonical
NSGA-II on the Yeast2 problem and the same tendency was observed for Yeast1

and Spect problems (not shown in the �gure). Surprisingly, NSGA-II SiS is in-
deed able to produce much shorter programs compared to the other two methods
on the Ion problem. This is aligned to the results reported in[8], where the au-
thors pointed out that SiS is capable of producing shorter programs compared
to, for example, the well-known semantically-based crossover [14].

From this, we believe that researchers tend to report mixed results on bloat
because its appearance is dependant on both: problem and approach used, and
so, no general conclusions can be drawn on this.

5 Conclusions and Future Work

In genetic programming, semantics is commonly de�ned as themeaning (be-
haviour) of syntactically correct programs. In canonical GP, it is said that two
individuals are semantically di�erent if their output vect ors are di�erent, they
are considered semantically similar, otherwise.

In this work we adopted two forms of semantics in Multi-Objective GP.
One was the adoption of Semantics in Selection (SiS) adaptedfrom canonical
GP to NSGA-II. The other approach, named Distance-based Semantics (DBS),
consisted in using a semantic distance into the core of the NSGA-II mechanism.

We have learned that semantic-based NSGA-II behaves betterthan NSGA-
II on the unbalanced binary classi�cation problems used in this work. We also
learned that the NSGA-II DBS behaves better compared to NSGA-II SiS. We
believe that the reason behind this is because the concept ofsemantic distance
is used into the very core of the NSGA-II. There are multiple research areas that
we will consider in the near future. An in-depth analysis is required to know why
DBS is better than SiS. Given the encouraging results, it is worth considering to
study the e�ects of semantics in other parts of a MOGP algorithm (e.g., ranking
system). It is also necessary to study the adoption of semantics and its impact
in other well-known MO approaches.
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