D. N. Asuncion, UCI machine learning repository, 2007.

V. , .. L. Beadle, and C. Johnson, Semantically driven crossover in genetic programming, Evolutionary ComputationIEEE World Congress on Computational Intelligence). IEEE Congress on, pp.111-116, 2008.

U. Bhowan, M. Johnston, M. Zhang, and X. Yao, Evolving Diverse Ensembles Using Genetic Programming for Classification With Unbalanced Data, IEEE Transactions on Evolutionary Computation, vol.17, issue.3, pp.368-386, 2013.
DOI : 10.1109/TEVC.2012.2199119

C. A. Coello, G. B. Lamont, and D. A. Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

E. Galván-lópez, Efficient graph-based genetic programming representation with multiple outputs, International Journal of Automation and Computing, vol.16, issue.1, pp.81-89, 2008.
DOI : 10.1007/s11633-008-0081-4

E. Galván-lópez, B. Cody-kenny, L. Trujillo, and A. Kattan, Using semantics in the selection mechanism in Genetic Programming: A simple method for promoting semantic diversity, 2013 IEEE Congress on Evolutionary Computation, pp.2972-2979, 2013.
DOI : 10.1109/CEC.2013.6557931

J. R. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing, vol.4, issue.2, 1992.
DOI : 10.1007/BF00175355

J. R. Koza, Human-competitive results produced by genetic programming, Genetic Programming and Evolvable Machines, vol.2, issue.3, pp.251-284, 2010.
DOI : 10.1007/s10710-010-9112-3

K. Krawiec and T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators, Genetic Programming and Evolvable Machines, vol.3, issue.3, pp.31-63, 2013.
DOI : 10.1007/s10710-012-9172-7

P. K. Lehre, F. Neumann, J. E. Rowe, X. Yao, A. Auger et al., Theoretical foundations of evolutionary computation hypervolumebased multiobjective optimization: Theoretical foundations and practical implications, Theoretical Computer Science, vol.425, pp.75-103, 2012.

N. F. Mcphee, B. Ohs, and T. Hutchison, Semantic Building Blocks in Genetic Programming, Proceedings of the 11th European conference on Genetic programming , EuroGP'08, pp.134-145, 2008.
DOI : 10.1007/978-3-540-78671-9_12

N. Q. Uy, N. X. Hoai, M. O. Neill, R. I. Mckay, and E. Galván-lópez, Semantically-based crossover in genetic programming: application to real-valued symbolic regression, Genetic Programming and Evolvable Machines, vol.5, issue.2, pp.91-119, 2011.
DOI : 10.1007/s10710-010-9121-2

N. Q. Uy, N. X. Hoai, M. Oneill, R. Mckay, and D. N. Phong, On the roles of semantic locality of crossover in genetic programming, Data-based Control, Decision, Scheduling and Fault Diagnostics, pp.195-213, 2013.
DOI : 10.1016/j.ins.2013.02.008

L. Vanneschi, M. Castelli, and S. Silva, A survey of semantic methods in genetic programming. Genetic Programming and Evolvable Machines, pp.195-214, 2014.