Generalized Dynkin games and doubly reflected BSDEs with jumps

Abstract : We introduce a game problem which can be seen as a generalization of the classical Dynkin game problem to the case of a nonlinear expectation ${\cal E}^g$, induced by a Backward Stochastic Differential Equation (BSDE) with jumps with nonlinear driver $g$. Let $\xi, \zeta$ be two RCLL adapted processes with $\xi \leq \zeta$. The criterium is given by $ {\cal J}_{\tau, \sigma}= {\cal E}^g_{0, \tau \wedge \sigma } \left(\xi_{\tau}\textbf{1}_{\{ \tau \leq \sigma\}}+\zeta_{\sigma}\textbf{1}_{\{\sigma<\tau\}}\right)$ where $\tau$ and $ \sigma$ are stopping times valued in $[0,T]$. Under Mokobodzki's condition, we establish the existence of a value function for this game, i.e. $\inf_{\sigma}\sup_{\tau} {\cal J}_{\tau, \sigma} = \sup_{\tau} \inf_{\sigma} {\cal J}_{\tau, \sigma}$. This value can be characterized via a doubly reflected BSDE. Using this characterization, we provide some new results on these equations, such as comparison theorems and a priori estimates. When $\xi$ and $\zeta$ are left upper semicontinuous along stopping times, we prove the existence of a saddle point. We also study a generalized mixed game problem when the players have two actions: continuous control and stopping. We then study the generalized Dynkin game in a Markovian framework and its links with parabolic partial integro-differential variational inequalities with two obstacles.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, <10.1214/16-EJP4568>
Liste complète des métadonnées

https://hal.inria.fr/hal-01388022
Contributeur : Martine Verneuille <>
Soumis le : jeudi 17 novembre 2016 - 15:45:47
Dernière modification le : samedi 18 février 2017 - 01:10:45
Document(s) archivé(s) le : jeudi 16 mars 2017 - 17:48:08

Fichier

generalized.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Roxana Dumitrescu, Marie-Claire Quenez, Agnès Sulem. Generalized Dynkin games and doubly reflected BSDEs with jumps. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2016, <10.1214/16-EJP4568>. <hal-01388022>

Partager

Métriques

Consultations de
la notice

154

Téléchargements du document

52