M. Esther, R. Arkin, and . Hassin, A note on orientations of mixed graphs, Discrete Applied Mathematics, vol.116, issue.3, pp.271-278, 2002.

W. Ben-ameur, A. Glorieux, and J. Neto, On the most imbalanced orientation of a graph, Computing and Combinatorics: 21st International Conference , COCOON 2015, pp.16-29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01265452

F. Boesch and R. Tindell, Robbins's Theorem for Mixed Multigraphs, The American Mathematical Monthly, vol.87, issue.9, pp.716-719, 1980.
DOI : 10.2307/2321858

B. Bollobás, Modern graph theory, 1998.
DOI : 10.1007/978-1-4612-0619-4

E. Rainer, K. Burkard, B. Feldbacher, G. J. Klinz, and . Woeginger, Minimum-cost strong network orientation problems: Classification, complexity, and algorithms, Networks, vol.33, issue.1, pp.57-70, 1999.

G. Chartrand, F. Harary, M. Schultz, E. Curtiss, and . Wall, Forced orientation number of a graph, Congressus Numerantium, pp.183-192, 1994.

R. Fan, . Chung, R. Michael, . Garey, E. Robert et al., Strongly connected orientations of mixed multigraphs, Networks, vol.15, issue.4, pp.477-484, 1985.

V. Chvátal and C. Thomassen, Distances in orientations of graphs, Journal of Combinatorial Theory, Series B, vol.24, issue.1, pp.61-75, 1978.
DOI : 10.1016/0095-8956(78)90078-3

A. Conte, R. Grossi, A. Marino, and R. Rizzi, Enumerating Cyclic Orientations of a Graph, 2015.
DOI : 10.1007/978-3-319-29516-9_8

A. Conte, R. Grossi, A. Marino, and R. Rizzi, Listing Acyclic Orientations of Graphs with Single and Multiple Sources, LATIN 2016: Theoretical Informatics -12th Latin American Symposium Proceedings, pp.319-333, 2016.
DOI : 10.1007/978-3-662-49529-2_24

URL : https://hal.archives-ouvertes.fr/hal-01388470

P. Dankelmann, O. R. Oellermann, and J. Wu, Minimum average distance of strong orientations of graphs, Discrete Applied Mathematics, vol.143, issue.1-3, pp.204-212, 2004.
DOI : 10.1016/j.dam.2004.01.005

V. Fedor, M. Fomin, I. Matamala, and . Rapaport, Complexity of approximating the oriented diameter of chordal graphs, Journal of Graph Theory, vol.45, issue.4, pp.255-269, 2004.

V. Fedor, M. Fomin, E. Matamala, I. Prisner, and . Rapaport, At-free graphs: linear bounds for the oriented diameter, Discrete Applied Mathematics, vol.141, issue.1, pp.135-148, 2004.

K. Fukuda, A. Prodon, and T. Sakuma, Notes on acyclic orientations and the shelling lemma, Theoretical Computer Science, vol.263, issue.1-2, pp.9-16, 2001.
DOI : 10.1016/S0304-3975(00)00226-7

URL : http://doi.org/10.1016/s0304-3975(00)00226-7

G. Gutin, Minimizing and maximizing the diameter in orientations of graphs, Graphs and Combinatorics, vol.5, issue.3, pp.225-230, 1994.
DOI : 10.1007/BF02986669

R. Hassin and N. Megiddo, On orientations and shortest paths, Linear Algebra and its Applications, vol.114, issue.115, pp.589-602, 1989.
DOI : 10.1016/0024-3795(89)90481-3

URL : http://doi.org/10.1016/0024-3795(89)90481-3

F. Giuseppe, L. Italiano, F. Laura, and . Santaroni, Finding strong bridges and strong articulation points in linear time, Theoretical Computer Science, vol.447, pp.74-84, 2012.

K. M. Koh and E. G. Tay, Optimal Orientations of Graphs and Digraphs: A Survey, Graphs and Combinatorics, vol.18, issue.4, pp.745-756, 2002.
DOI : 10.1007/s003730200060

M. Laetsch and S. Kurz, Bounds for the minimum oriented diameter, Discrete Mathematics & Theoretical Computer Science, vol.14, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00990564

J. Plesník, On the sum of all distances in a graph or digraph, Journal of Graph Theory, vol.4, issue.1, pp.1-21, 1984.
DOI : 10.1002/jgt.3190080102

H. E. Robbins, A Theorem on Graphs, with an Application to a Problem of Traffic Control, The American Mathematical Monthly, vol.46, issue.5, pp.281-283, 1939.
DOI : 10.2307/2303897

F. S. Roberts, Graph Theory and its Applications to Problems of Society. NSF- CBSM Monograph No. 29, 1978.

S. Fred, Y. Roberts, and . Xu, On the optimal strongly connected orientations of city street graphs. II: Two east-west avenues or northsouth streets, Networks, vol.19, issue.2, pp.221-233, 1989.

S. Fred, Y. Roberts, and . Xu, On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM J. on Discrete Math, vol.1, issue.2, pp.199-222, 1988.

S. Fred, Y. Roberts, and . Xu, On the optimal strongly connected orientations of city street graphs. III. Three east?west avenues or north?south streets, Networks, vol.22, issue.2, pp.109-143, 1992.

S. Fred, Y. Roberts, and . Xu, On the optimal strongly connected orientations of city street graphs IV: Four east-west avenues or north-south streets, Discrete Applied Mathematics, vol.49, issue.1, pp.331-356, 1994.

T. Uno, Two general methods to reduce delay and change of enumeration algorithms, 2003.