Slice inverse regression with score functions

Dmitry Babichev 1, 2 Francis Bach 1, 2
1 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, CNRS - Centre National de la Recherche Scientifique, Inria de Paris
Abstract : We consider non-linear regression problems where we assume that the response depends non-linearly on a linear projection of the covariates. We propose score function extensions to sliced inverse regression problems, both for the first-order and second-order score functions. We show that they provably improve estimation in the population case over the non-sliced versions and we study finite sample estimators and their consistency given the exact score functions. We also propose to learn the score function as well, in two steps, i.e., first learning the score function and then learning the effective dimension reduction space, or directly, by solving a convex optimization problem regularized by the nuclear norm. We illustrate our results on a series of experiments.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2018, Volume 12, Number 1 (2018), pp.1507-1543. 〈10.1214/18-EJS1428〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01388498
Contributeur : Dmitry Babichev <>
Soumis le : mercredi 21 novembre 2018 - 14:25:24
Dernière modification le : mardi 27 novembre 2018 - 09:46:08

Fichier

Sliced Inverse regression with...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Dmitry Babichev, Francis Bach. Slice inverse regression with score functions. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2018, Volume 12, Number 1 (2018), pp.1507-1543. 〈10.1214/18-EJS1428〉. 〈hal-01388498v2〉

Partager

Métriques

Consultations de la notice

15

Téléchargements de fichiers

56