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Abstract: We consider non-linear regression problems where we assume
that the response depends non-linearly on a linear projection of the co-
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show that they provably improve estimation in the population case over
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1. Introduction

Non-linear regression and related problems such as non-linear classification are
core important tasks in machine learning and statistics. In this paper, we con-
sider a random vector x ∈ Rd, a random response y ∈ R, and a regression model
of the form

y = f(x) + ε, (1.1)

which we want to estimate from n independent and identically distributed (i.i.d.)
observations (xi, yi), i = 1, . . . , n. Our goal is to estimate the function f from
these data. A traditional key difficulty in this general regression problem is
the lack of parametric assumptions regarding the functional form of f , leading
to a problem of non-parametric regression. This is often tackled by searching
implicitly or explicitly a function f within an infinite-dimensional vector space.

While several techniques exist to estimate such a function, e.g., kernel meth-
ods, local-averaging, or neural networks (see, e.g., [14]), they also suffer from
the curse of dimensionality, that is, the rate of convergence of the estimated
function to the true function (with any relevant performance measure) can only
decrease as a small power of n, and this power cannot be larger than a con-
stant divided by d. In other words, the number n of observations for any level
of precision is exponential in dimension.

A classical way of by-passing the curse of dimensionality is to make extra
assumptions regarding the function to estimate, such as the dependence on a
lower unknown low-dimensional subspace, such as done by projection pursuit or
neural networks. More precisely, throughout the paper, we make the following
assumption:

(A1) For all x ∈ Rd, we have f(x) = g(w>x) for a certain matrix w ∈ Rd×k
and a function g : Rk → R. Moreover, y = f(x) + ε with ε independent
of x with zero mean and finite variance.

The subspace of Rd spanned by the k columns w1, . . . , wk ∈ Rd of w has
dimension less than or equal to k, and is often called the effective dimension
reduction (e.d.r.) space. The model above is often referred to as a multiple-index
model [38]. We will always make the assumption that the e.d.r. space has exactly
rank k, that is the matrix w has rank k (which implies that k 6 d).

Given w, estimating g may be done by any technique in non-parametric re-
gression, with a convergence rate which requires a number of observations n to
be exponential in k, with methods based on local averaging (e.g., Nadaraya-
Watson estimators) or on least-squares regression [see, e.g., 14, 29]. Given the
non-linear function g, estimating w is computationally difficult because the re-
sulting optimization problem may not be convex and thus leads to several local
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minima. The difficulty is often even stronger since one often wants to estimate
both the function g and the matrix w.

Our main goal in this paper is to estimate the matrix w, with the hope of ob-
taining a convergence rate where the inverse power of n will now be proportional
to k and not d. Note that the matrix w is only identifiable up to a (right) linear
transform, since only the subspace spanned by its column is characteristic.

Method of moments vs. optimization. This multiple-index problem and
the goal of estimating w only can be tackled from two points of views: (a)
the method of moments, where certain moments are built so that the effect of
the unknown function g disappears [6, 23], a method that we follow here and
describe in more details below. These methods rely heavily on the model being
correct, and in the instances that we consider here lead to provably polynomial-
time algorithms (and most often linear in the number of observations since
only moments are computed). In contrast, (b) optimization-based methods use
implicitly or explicitly non-parametric estimation, e.g., using local averaging
methods to design an objective function that can be minimized to obtain an
estimate of w [35, 13]. The objective function is usually non-convex and gradient
descent techniques are used to obtain a local minimum. While these procedures
offer no theoretical guarantees due to the potential unknown difficulty of the
optimization problem, they often work well in practice, and we have observed
this in our experiments.

In this paper, we consider and improve a specific instantiation of the method
of moments, which partially circumvents the difficulty of joint estimation by
estimating w directly without the knowledge of g. The starting point for this
method is the work by Brillinger [6], which shows, as a simple consequence of
Stein’s lemma [26], that if the distribution of x is Gaussian, (A1) is satisfied
with k = 1 (e.d.r. of dimension one, e.g., a single-index model), and the input
data have zero mean and identity covariance matrix, then the expectation E(yx)
is proportional to w. Thus, a certain expectation, which can be easily approxi-
mated given i.i.d. observations, simultaneously eliminates g and reveals w.

While the result above provides a very simple algorithm to recover w, it has
several strong limitations: (a) it only applies to normally distributed data x, or
more generally to elliptically symmetric distributions [7], (b) it only applies to
k = 1, and (c) in many situations with symmetries, the proportionality constant
is equal to zero and thus we cannot recover the vector w. This has led to several
extensions in the statistical literature which we now present.

Using score functions. The use of Stein’s lemma with a Gaussian random
variable can be directly extended using the score function S1(x) defined as the
negative gradient of the log-density, that is, S1(x) = −∇ log p(x) = −1

p(x)∇p(x),

which leads to the following assumption:

(A2) The distribution of x has a strictly positive density p(x) which is differ-
entiable with respect to the Lebesgue measure, and such that p(x) → 0
when ‖x‖ → +∞.
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We will need the score to be sub-Gaussian to obtain consistency results. Given
Assumption (A2), then [28] showed, as a simple consequence of integration
by parts, that, for k = 1 and if Assumption (A1) is satisfied, then E(yS1(x))
is proportional to w, for all differentiable functions g, with a proportionality
constant that depends on w and ∇g. This leads to the “average derivative
method” (ADE) and thus replaces the Gaussian assumption by the existence of
a differentiable log-density, which is much weaker. This however does not remove
the restriction k = 1, which can be done in two ways which we now present.

Sliced inverse regression. Given a normalized Gaussian distribution for x
(or any elliptically symmetric distribution), then, if (A1) is satisfied, almost
surely in y, the conditional expectation E(x|y) happens to belong to the e.d.r. sub-
space. Given several distinct values of y, the vectors E(x|y) or any estimate
thereof, will hopefully span the entire e.d.r. space and we can recover the entire
matrix w, leading to “slice inverse regression” (SIR), originally proposed by Li
and Duan [23], Duan and Li [12] and Li [21]. This allows the estimation with
k > 1, but this is still restricted to Gaussian data. In this paper, we propose
to extend SIR by the use of score functions to go beyond elliptically symmet-
ric distributions, and we show that the new method combining SIR and score
functions is formally better than the plain ADE method.

From first-order to second-order moments. Another line of extension of
the simple method of Brillinger [6] is to consider higher-order moments, namely
the matrix E(yxx>) ∈ Rd×d, which, with normally distributed input data x and,
if (A1) is satisfied, will be proportional (in a particular form to be described in
Section 2.2) to the Hessian of the function g, leading to the method of “principal
Hessian directions” (PHD) from Li [22]. Again, k > 1 is allowed (more than a
single projection), but thus is limited to elliptically symmetric data. Janzamin,
Sedghi and Anandkumar [19] proposed to used second-order score functions to
go beyond this assumption. In order to define this new method, we consider the
following assumption:

(A3) The distribution of x has a strictly positive density p(x) which is twice
differentiable with respect to the Lebesgue measure, and such that p(x)
and ‖∇p(x)‖ → 0 when ‖x‖ → +∞.

Given (A1) and (A3), then one can show [19] that E(yS2(x)) will be propor-
tional to the Hessian of the function g, where S2(x) = ∇2 log p(x)+S1(x)S1(x)> =

1
p(x)∇

2p(x), thus extending the Gaussian situation above where S1 was a linear

function and S2(x), up to linear terms, proportional to xx>.
In this paper, we propose to extend the method above to allow an SIR es-

timator for the second-order score functions, where we condition on y, and we
show that the new method is formally better than the plain method of [19].

Learning score functions through score matching. Relying on score
functions immediately raises the following question: is estimating the score
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function (when not available) really simpler than our original problem of non-
parametric regression? Fortunately, a recent line of work [1] has considered this
exact problem, and formulated the task of density estimation directly on score
functions, which is particularly useful in our context. We may then use the data,
first to learn the score, and then to use the novel score-based moments to esti-
mate w. We will also consider a direct approach that jointly estimates the score
function and the e.d.r. subspace, by regularizing by a sparsity-inducing norm.

Fighting the curse of dimensionality. Learning the score function is still a
non-parametric problem, with the associated curse of dimensionality. If we first
learn the score function (through score matching) and then learn the matrix w,
we will not escape that curse, while our direct approach is empirically more
robust.

Note that Hristache, Juditsky and Spokoiny [16] suggested iterative improve-
ments of the ADE method, using elliptic windows which shrink in the directions
of the columns of w, stretch in all others directions and tend to flat layers or-
thogonal to w. Dalalyan, Juditsky and Spokoiny [11] generalize the algorithm to
multi-index models and proved

√
n-consistency of the proposed procedure in the

case when the structural dimension is not larger than 4 and weaker dependence
for d > 4. In particular, they provably avoid the curse of dimensionality. Such
extensions are outside the scope of this paper.

Contributions. In this paper, we make the following contributions:

• We propose score function extensions to sliced inverse regression problems,
both for the first-order and second-order score functions. We consider the
infinite sample case in Section 2 and the finite sample case in Section 3.
They provably improve estimation in the population case over the non-
sliced versions, while we study in Section 3 finite sample estimators and
their consistency given the exact score functions.

• We propose in Section 4 to learn the score function as well, in two steps,
i.e., first learning the score function and then learning the e.d.r. space
parameterized by w, or directly, by solving a convex optimization problem
regularized by the nuclear norm.

• We illustrate our results in Section 5 on a series of experiments.

2. Estimation with infinite sample size

In this section, we focus on the population situation, where we can compute ex-
pectations and conditional expectations exactly, while we focus on finite sample
estimators with known score functions in Section 3 with consistency results in
Section 3.3, and with learned score functions in Section 4.

2.1. SADE: Sliced average derivative estimation

Before presenting our new moments which will lead to the novel SADE method,
we consider the non-sliced method, which is based on Assumptions (A1) and
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(A2) and score functions (the method based on the Gaussian assumption will be
derived later as corollaries). The ADE method is based on the following lemma:

Lemma 1 (ADE moment [28]). Assume (A1), (A2), the differentiability of g
and the existence of expectation E(g′(w>x)). Then E(S1(x)y) is in the e.d.r. sub-
space.

Proof. Since y = f(x) + ε, and ε is independent of x with zero mean, we have

E(S1(x)y) = E(S1(x)f(x)) =

∫
Rd

−∇p(x)

p(x)
f(x)p(x)dx

= −
∫
Rd
∇p(x)f(x)dx =

∫
Rd
p(x)∇f(x)dx by integration by parts,

= w · E(g′(w>x)),

which leads to the desired result. Note that in the integration by parts above,
the decay of p(x) to zero for ‖x‖ → +∞ is needed.

The ADE moment above only provides a single vector in the e.d.r. subspace,
which can only potentially lead to recovery for k = 1, and only if E(g′(w>x)) 6=
0, which may not be satisfied, e.g., if x has a a symmetric distribution and g is
even.

We can now present our first new lemma, the proof of which relies on similar
arguments as for SIR [23] but extended to score functions. Note that we do not
require the differentiability of the function g.

Lemma 2 (SADE moment). Assume (A1) and (A2). Then, E(S1(x)|y) is in
the e.d.r. subspace almost surely (in y).

Proof. We consider any vector b ∈ Rd in the orthogonal complement of the sub-
space Span{w1, . . . , wk}. We need to show, that b>E(S1(x)|y) = 0 with proba-
bility 1. We have by the law of total expectation

b>E
(
S1(x)|y

)
= E

(
E
(
b>S1(x)|w>1 x, . . . , w>k x, y

)
|y
)
.

Because of Assumption (A1), we have y = g(w>x) + ε with ε independent of
x, and thus

E
(
b>S1(x)|w>x, y

)
= E

(
b>S1(x)|w>x, ε

)
= E

(
b>S1(x)|w>x

)
almost surely.

This leads to
b>E

(
S1(x)|y

)
= E

[
E
(
b>S1(x)|w>x

)∣∣y].
We now prove that almost surely E

(
b>S1(x)|w>x

)
= 0, which will be sufficient

to prove Lemma 2. We consider the linear transformation of coordinates: x̃ =
w̃>x ∈ Rd, where w̃ = (w1, . . . , wk, wk+1, . . . , wd) is a square matrix with full
rank obtained by adding a basis of the subspace orthogonal to the span of the
k columns of w. Then, if p̃ is the density of x̃, we have p(x) = (det w̃) · p̃(x̃) and
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thus ∇p(x) = (det w̃) · w̃ · ∇p̃(x̃) and b̃ = w̃>b = (0, . . . , 0, b̃k+1, . . . , b̃d) ∈ Rd
(because b ⊥ Span{w1, . . . , wk}). The desired conditional expectation equals

E
(
b̃>S̃1(x̃)|x̃1, . . . , x̃k

)
,

since w̃S̃1(x̃) =
w̃∇p̃(x̃)

p̃(x̃)
=
∇p(x)

p(x)
= S1(x) and hence b>S1(x) = b>w̃ S̃1(x̃) =

b̃>S̃1(x̃).

It is thus sufficient to show that

∫
Rd−k

b̃>S̃1(x̃)p̃(x̃1, . . . , x̃d)dx̃k+1 . . . dx̃d = 0,

for all x̃1, . . . , x̃k. We have∫
Rd−k

b̃>S̃1(x̃)p̃(x̃1, . . . , x̃d)dx̃k+1 . . . dx̃d = b̃>
∫

Rd−k

∇p̃(x̃) · dx̃k+1 . . . dx̃d

=

d∑
j=k+1

b̃j ·
∞∫
−∞

∞∫
−∞

· · ·
∞∫
−∞

∂p̃(x̃)

∂x̃j
dx̃j ·

∏
k+16t6d

t 6=j

dx̃t = 0,

because for any j ∈ {k+1, . . . , n},
∞∫
−∞

∂p̃(x̃)

∂x̃j
dx̃j = 0 by Assumption (A2). This

leads to the desired result.

The key differences are now that:

• Unlike ADE, by conditioning on different values of y, we have access to
several vectors E(S1(x)|y) ∈ Rd.

• Unlike SIR, SADE does not require the linearity condition from [21] any-
more and can be used with a smooth enough probability density.

In the population case, we will consider the following matrix (using the fact that
E(S1(x)) = 0):

V1,cov = E
[
E(S1(x)|y)E(S1(x)|y)>

]
= Cov

[
E(S1(x)|y)

]
∈ Rd×d,

which we will also denote E
[
E(S1(x)|y)⊗2

]
, where for any matrix a, a⊗2 denotes

aa>. The matrix above is positive semi-definite, and its column space is included
in the e.d.r. space. If it has rank k, then we can exactly recover the entire
subspace by an eigenvalue decomposition. When k = 1, which is the only case
where ADE may be used, the following proposition shows that if ADE allows
to recover w, so is SADE.

We will also consider the other matrix (note the presence of the extra term y2)

V′1,cov = E
[
y2E(S1(x)|y)E(S1(x)|y)>

]
,

because of its direct link with the non-sliced version. Note that we made the
weak assumption of existence of matrices V1,cov and V′1,cov, which is satisfied
for majority of problems.
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Proposition 1. Assume (A1) and (A2), with k = 1, as well as differen-
tiability of g and existence of the expectation Eg′(w>x). The vector w may be
recovered from the ADE moment (up to scale) if and only if Eg′(w>x) 6= 0. If
this condition is satisfied, then SADE also recovers w up to scale (i.e., V1,cov
and V′1,cov are different from zero).

Proof. The first statement is a consequence of the proof of Lemma 1. If SADE
fails, that is, for almost all y, E(S1(x)|y) = 0, then E(S1(x)y|y) = 0 which implies
that E(S1(x)y) = 0 and thus ADE fails. Moreover, we have, using operator
convexity [33]:

V′1,cov = E
[
E(yS1(x)|y)E(yS1(x)|y)>

]
<
[
E(E(yS1(x)|y))

][
E(E(yS1(x)|y))

]>
=

=
[
E(yS1(x))

][
E(yS1(x))

]>
,

showing that the new moment is dominating the ADE moment, which provides
an alternative proof of the rank of V′1,cov being larger than one if E(yS1(x)) 6= 0.

Elliptically symmetric distributions. If x is normally distributed with
mean vector µ and covariance matrix Σ, then we have S1(x) = Σ−1(x − µ)
and we recover the result from [23]. Note that the lemma then extends to all
elliptical distributions of the form ϕ( 1

2 (x−µ)>Σ−1(x−µ)), for a certain function
ϕ : R+ → R. See [23].

Failure modes. In some cases, slice inverse regression does not span the entire
e.d.r. space, because the inverse regression curve E(S1(x)|y) is degenerated. For
example, this can occur, if k = 1, y = h(w>1 x) + ε, h is an even function and
w>1 x has a symmetric distribution around 0. Then E(S1(x)|y) ≡ 0, and thus it
is a poor estimation of the desired e.d.r. directions [10].

The second drawback of SIR occurs when we have a classification task, for
example, y ∈ {0, 1}. In this case, we have only two slices (i.e., possible values
of y) and SIR can recover only one direction in the e.d.r. space [9].

Li [22] suggested another way to estimate the e.d.r. space which can handle
such symmetric cases: principal Hessian directions (PHD). However, this method
uses the normality of the vector X. As in the SIR case, we can extend this
method, using score functions to use it for any distribution, which we will refer
to as SPHD, which we now present.

2.2. SPHD: Sliced principal Hessian directions

Before presenting our new moment which will lead to the SPHD method, we
consider the non-sliced method, which is based on Assumptions (A1) and (A3)
and score functions (the method based on the Gaussian assumption will be
derived later as corollaries). The method of [19], which we refer to as “PHD+”
is based on the following lemma (we reproduce the proof for readability):
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Lemma 3 (second-order score moment (PHD+) [19]). Assume (A1),(A3),twice
differentiability of function g and existence of the expectation E(∇2g(w>x)).
Then E(S2(x)y) has a column space included in the e.d.r. subspace.

Proof. Since y = f(x) + ε, and ε is independent of x, we have

E
(
yS2(x)) = E

(
f(x)S2(x)

)
=

∫
∇2p(x)

p(x)
p(x)f(x)dx =

=

∫
∇2p(x) · f(x)dx =

∫
p(x) · ∇2f(x)dx = E

[
∇2f(x)

]
,

using integration by parts and the decay of p(x) and ∇p(x) for ‖x‖ → ∞. This
leads to the desired result since ∇2f(x) = w∇2g(w>x)w>. This was proved by
Li [22] for normal distributions.

Failure modes. The method does not work properly if rank(E(∇2g(w>x))) <
k. For example, if g is linear function, E(∇2g(w>x)) ≡ 0 and the estimated
e.d.r. space is degenerated. Moreover, the method fails in symmetric cases, for
example, if g is an odd function with respect to any variable and p(x) is even
function, then rank(E(∇2g(w>x))) < k.

We can now present our second new lemma, the proof of which relies on
similar arguments as for PHD [22] but extended to score functions (again no
differentiability is assumed on g):

Lemma 4 (SPHD moment). Assume (A1) and (A3). Then, E(S2(x)|y) has
a column space within the e.d.r. subspace almost surely.

Proof. We consider any a ∈ Rd and b ∈ Rd orthogonal to the e.d.r. subspace,
and prove, that a>E

(
S2(x)|y

)
b = 0. We use the same transform of coordinates as

in the proof of Lemma 2: x̃ = w̃>x ∈ Rd. Then ∇2p(x) = det(w̃) · w̃∇2p̃(x̃)w̃>,
b̃ = w̃>b = (0, . . . , 0, b̃k+1, . . . , b̃d) and we will prove, that E

(
a>S2(x)b|w>x

)
= 0

almost surely, and w̃>S̃2(x̃)w̃ =
w̃>∇2p̃(x̃)w̃

p̃(x̃)
=
∇2p(x)

p(x)
= S2(x). It is sufficient

to show, that for all x̃1, . . . , x̃k:∫
Rd−k

ã> · S̃2(x̃) · b̃ · p̃(x̃1, . . . , x̃d)dx̃k+1 . . . dx̃d = 0.

We have:∫
Rd−k

ã> ·S̃2(x̃)·b̃·p̃(x̃1, . . . , x̃d)dx̃k+1 . . . dx̃d = ã> ·
[ ∫
Rd−k

∇2p̃(x̃)·dx̃k+1 · · · dx̃d
]
·b̃

=
∑

16i6d
k+16j6d

ãib̃j

∞∫
−∞

∞∫
−∞

· · ·

[ ∞∫
−∞

∂2P̃ (x̃)

∂x̃i∂x̃j
· dx̃j

]
·

∏
k+16t6d

t 6=j

dx̃t = 0,
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because for any j ∈ {k+1, . . . , n}:
∞∫
−∞

∂2P̃ (x̃)

∂x̃i∂x̃j
·dx̃j = 0 due to Assumption (A3),

which leads to the desired result.

In order to combine several values of y, we will estimate the matrix V2 =

E
(

[E
(
S2(x)|y)]2

)
, which is the expectation with respect to y of the square (in

the matrix multiplication sense) of the conditional expectation from Lemma 4,

as well as V′2 = E
(
y2[E

(
S2(x)|y)]2

)
, and consider the k largest eigenvectors

(we made the weak assumption of existence of matrices V2 and V′2, which is
satisfied for majority of problems). From the lemma above, this matrix has a
column space included in the e.d.r. subspace, thus, if it has rank k, we get exact
recovery by an eigenvalue decomposition.

Effect of slicing. We now study the effect of slicing and show that in the
population case, it is superior to the non-sliced version, as it recovers the true
e.d.r. subspace in more situations.

Proposition 2. Assume (A1) and (A3). The matrix w may be recovered
from the moment in Lemma 3 (up to right linear transform) if and only if
E[∇2g(w>x)] has full rank. If this condition is satisfied, then SPHD also recov-
ers w up to scale.

Proof. The first statement is a consequence of the proof of Lemma 3. Moreover,
using the Lowner-Heinz theorem about operator convexity [33]:

V′2 = E
[
E(yS2(x)|y)2

]
<
[
E[E(yS2(x)|y)]

]2
=
[
E(yS2(x))

]2
,

showing that the new moment is dominating the PHD moment, thus implying
that

rank[V′2] > rank
[
E(yS2(x))

]
.

Therefore, if rank
[
E(yS2(x))

]
= k, then rank[V′2] = k (note that there is not

such a simple proof for V2).

Elliptically symmetric distributions. When x is a standard Gaussian ran-

dom variable, then S2(x) = −I + xx>, and thus E
(

[E
(
S2(x)|y)]2

)
= E

(
[I −

Cov(x|y)]2
)

, and we recover the sliced average variance estimation (SAVE)

method by Cook and Weisberg [8]. However, our method applies to all dis-
tributions (with known score functions).

2.3. Relationship between first and second order methods

All considered methods have their own failure modes. The simplest one: ADE
works only in single-index model and has quite a simple working condition :
E[g′(w>x)] 6= 0. The sliced improvement (e.g., SADE) of this algorithm has

imsart-ejs ver. 2014/10/16 file: "Sliced Inverse regression with score functions".tex date: April 18, 2018



D.Babichev and F.Bach/Slice inverse regression with score functions 11

a better performance, however it still suffers from symmetric cases, when the
inverse regression curve is partly degenerated. PHD+ can not work properly
in linear models and symmetric cases. SPHD is stronger than PHD+ and po-
tentially has the widest application area among four described methods. See
summary in Table 1.

Our conditions rely on the full possible rank of certain expected covariance
matrices. When the function g is selected randomly from all potential functions
from Rk to R, rank-deficiencies typically do not occur and it would be interest-
ing to show that indeed they appear with probability zero for certain random
function models.

method main equation score sliced single-index multi-index

ADE E(S1(x)y) first no E[g′(w>x)] 6= 0 does not work

SADE Ey

[
E
(
S1(x)|y)⊗2

]
first yes Ey

[
‖E
(
S1(x)|y‖2

]
> 0 rank Ey

[
E
(
S1(x)|y)⊗2

]
= k

PHD+ E(S2(x)y) second no E[g′′(w>x)] 6= 0 rank
[
E[∇2g(x)]

]
= k

SPHD Ey

[
E
(

(S2(x)|y)2
)]

second yes Ey

[
trE
(

(S2(x)|y)2
)]

> 0 rank Ey

[
E
(

(S2(x)|y)2
)]

= k

Table 1
Comparison of different methods using score functions.

3. Estimation from finite sample

In this section, we consider finite sample estimators for the moments we have
defined in Section 2. Since our extensions are combinations of existing techniques
(using score functions and slicing) our finite-sample estimators naturally rely on
existing work [17, 39].

In this section, we assume that the score function is known. We consider
learning the score function in Section 4.

3.1. Estimator and algorithm for SADE

Our goal is to provide an estimator for V1,cov = E
[
E
(
S1(x)|y)E

(
S1(x)|y

)>]
=

Cov
[
E
(
S1(x)|y

)]
given a finite sample (xi, yi), i = 1, . . . , n. A similar estimator

for V′1,cov could be derived. In order to estimate V1,cov = Cov
[
E
(
S1(x)|y

)]
, we

will use the identity

Cov
[
S1(x)

]
= Cov

[
E
(
S1(x)|y

)]
+ E

[
Cov

(
S1(x)|y

)]
.

We use the natural consistent estimator 1
n

n∑
i=1

S1(xi)S1(xi)
> of Cov

[
S1(x)

]
.

In order to obtain an estimator of E
[
Cov

(
S1(x)|y

)]
, we consider slicing the

real numbers in H different slices, I1, . . . , IH , which are contiguous intervals

imsart-ejs ver. 2014/10/16 file: "Sliced Inverse regression with score functions".tex date: April 18, 2018



D.Babichev and F.Bach/Slice inverse regression with score functions 12

that form a partition of R (or of the range of all yi, i = 1, . . . , n). We then
compute an estimator of the conditional expectation (S1)h = E(S1(x)|y ∈ Ih)
with empirical averages: denoting p̂h the empirical proportion of yi, i = 1, . . . , n,
that fall in the slice Ih (which is assumed to be strictly positive), we estimate
E(S1(x)|y ∈ Ih) by

(Ŝ1)h =
1

np̂h

n∑
i=1

1yi∈IhS1(xi).

We then estimate Cov
(
S1(x)|y ∈ Ih

)
by

(Ŝ1)cov,h =
1

np̂h − 1

n∑
i=1

1yi∈Ih
(
S1(xi)− (Ŝ1)h

)(
S1(xi)− (Ŝ1)h

)>
.

Note that it is important here to normalize the covariance computation by 1
np̂h−1

(usual unbiased normalization of the variance) and not 1
np̂h

, to allow consistent

estimation even when the number of elements per slice is small (e.g., equal to 2).
We finally use the following estimator of V1,cov:

V̂1,cov =
1

n

n∑
i=1

S(xi)S(xi)
> −

H∑
h=1

p̂h · (Ŝ1)cov,h.

The final SADE algorithm is thus the following:

– Divide the range of y1, . . . , yn into H slices I1, . . . , IH . Let p̂h > 0 be the
proportion of yi, i = 1, . . . , n, that fall in slice Ih.

– For each slice Ih, compute the sample mean (Ŝ1)h and covariance (Ŝ1)cov,h:

(Ŝ1)h =
1

np̂h

n∑
i=1

1yi∈IhS1(xi) and (Ŝ1)cov,h = 1
np̂h−1

n∑
i=1

1yi∈Ih
(
S1(xi) −

(Ŝ1)h
)(
S1(xi)− (Ŝ1)h

)>
.

– Compute V̂1,cov = 1
n

n∑
i=1

S(xi)S(xi)
> −

H∑
h=1

p̂h · (Ŝ)cov,h.

– Find the k largest eigenvalues and let ŵ1, . . . , ŵk be eigenvectors in Rd
corresponding to these eigenvalues.

Choice of slices. There are different ways to choose slices I1, . . . , IH :

– all slices have the same length, that is we choose the maximum and the
minimum of y1, . . . , yn, and divide the range of y into H equal slices (for
simplicity, we assume that n is a multiple of H),

– we can also use the distribution of y to ensure a balanced distribution of
observations in each slice, and choose Ih = (F̂−1

y ((h−1)/H), F̂−1
y (h/H)],

where F̂y(t) =
1

n

n∑
i=1

1yi6t is the empirical distribution function of y. If n

is a multiple H, there are exactly c = n/H observations per slice.
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Later on in our experiments, we use the second way, where every slice has
c = n/H points, and our consistency result applies to this situation as well. Note
that there is a variation of SADE, which uses standardized data. If we denote

the standardized data as S̃1(xi) =
[

1
n

n∑
j=1

S1(xj)S1(xj)
>
]−1/2

S1(xi) (Remark 5.3

in [21]).

Computational complexity. The first step of the algorithm requires O(n)
elementary operations, the second O(nd2) operations, the third O(Hd2) and the
fourth O(kd2) operations. The overall dependence on dimension d is quadratic,
while the dependence on the number of observations is linear in n, as common
in moment-matching methods.

Estimating the number of components. Our estimation method does not
depend on k, up to the last step where the first k largest eigenvectors are se-
lected. A simple heuristic to select k, similar to the selection of the number of
components in principal component analysis, would select the largest k such that
the gap between the k-th and (k + 1)-th eigenvalue is large enough. This could
be made more formal using the technique of [21] for sliced inverse regression.

3.2. Estimator and algorithm for SPHD

We follow the same approach as for the SADE algorithm above, leading to the

following algorithm, which estimates V2 = E
(

[E
(
S2(x)|y)]2

)
and computes its

principal eigenvectors. Note that E
[
E(S2(x)|y ∈ Ih)

]
= E

[
S2(x)

]
= 0.

– Divide the range of y1, . . . , yn into H slices I1, . . . , IH . Let p̂h > 0 be the
proportion of yi, i = 1, . . . , n, that fall in slice Ih.

– For each slice, compute the sample mean (Ŝ2)h of S2(x): (Ŝ2)h =

1

np̂h

n∑
i=1

1yi∈IhS2(xi).

– Compute the weighted covariance matrix V̂2 =
H∑
h=1

p̂h(Ŝ2)2
h, find the k

largest eigenvalues and let ŵ1, . . . , ŵk be eigenvectors corresponding to
these eigenvalues.

The matrix V̂2 is then an estimator of E
(

[E
(
S2(x)|y)]2

)
.

Computational complexity. The first step of the algorithm requires O(n)
elementary operations, the second O(nd2) operations, the third O(Hd3) and
the fourth O(kd2) operations. The overall dependence on dimension d is cu-
bic, hence the method is slower than SADE (but still linear in the number of
observations n).
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3.3. Consistency for the SADE estimator and algorithm

In this section, we prove the consistency of the SADE moment estimator and
the resulting algorithm, when the score function is known. Following Hsing and
Carroll [17] and Xhu and Ng [39], we can get

√
n-consistency for the SADE

algorithm with very broad assumptions regarding the problem.
In this section, we focus on the simplest set of assumptions to pave the way

to the analysis for the nuclear norm in future work. The key novelty compared
to [17, 39] is a precise non-asymptotic analysis with precise constants.

We make the following assumptions:

(L1) The function m : R → Rd such that E(`(x)|y) = m(y) is L-Lipschitz-
continuous.

(L2) The random variable y ∈ R is sub-Gaussian, i.e., such that Eet(y−Ey) 6

eτ
2
y t

2/2, for some τy > 0.
(L3) The random variables `j(x) ∈ R are sub-Gaussian, i.e., such that Eet`j(x) 6

eτ
2
` t

2/2 for each component j ∈ {1, . . . , d}, for some τ` > 0.
(L4) The random variables ηj = `j(x)−mj(y) ∈ R are sub-Gaussian, i.e., such

that Eetηj 6 eτ
2
η t

2/2 for each component j ∈ {1, . . . , d}, for some τη > 0.

Now we formulate and proof the main theorem, where ‖ · ‖∗ is the nuclear

norm, defined as ‖A‖∗ = tr
(√
ATA

)
:

Theorem 1. Under assumptions (L1) - (L4) we get the following bound on

‖V̂1,cov − V1,cov‖∗: for any δ <
1

n
, with probability not less than 1− δ:

‖V̂1,cov − V1,cov‖∗ 6
d
√
d(195τ2

η + 2τ2
` )

√
n

√
log

24d2

δ

+
8L2τ2

y + 16τητyL
√
d+ (157τ2

η + 2τ2
` )d
√
d

n
log2 32d2n

δ
.

The proof of the theorem can be found in Appendix A.2. The leading term is

proportional to
d
√
dτ2
η√

n
, with a tail which is sub-Gaussian. We thus get a

√
n-

consistent estimator or V1. The dependency in d could probably be improved,
in particular when using slices of sizes c that tend to infinity (as done in [24]).

4. Learning score functions

All previous methods can work only if we know the score function of first or
second order. In practice, we do not have such information, and we have to
learn score functions from sampled data. In this section, we only consider the
first-order score function `(x) = S1(x) = −∇ log p(x).

We first present the score matching approach of [1], and then apply it to our
problem.
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4.1. Score matching to estimate score from data

Given the true score function `(x) = S1(x) = −∇ log p(x) and some i.i.d. data
generated from p(x), score matching aims at estimating the parameter of a

model for the score function ˆ̀(x), by minimizing a empirical quantity aiming to
estimate

Rscore(ˆ̀) =
1

2

∫
Rd
p(x)‖`(x)− ˆ̀(x)‖2dx.

As is, the quantity above leads to consistent estimation (i.e., pushing ˆ̀ close
to `), but seems to need the knowledge of the true score `(x). A key insight
from [1] is to use integration by parts to get (assuming the integrals exist):

Rscore(ˆ̀) =
1

2

∫
Rd
p(x)

[
‖`(x)‖2 + ‖ˆ̀(x)‖2 + 2ˆ̀(x)>∇ log p(x)

]
dx

=
1

2

∫
Rd
p(x)‖`(x)‖2dx+

1

2

∫
Rd
p(x)‖ˆ̀(x)‖2dx+

∫
Rd

ˆ̀(x)>∇p(x)dx

=
1

2

∫
Rd
p(x)‖`(x)‖2dx+

1

2

∫
Rd
p(x)‖ˆ̀(x)‖2dx−

∫
Rd

(∇ · ˆ̀)(x)p(x)dx,

by integration by parts, where (∇ · ˆ̀)(x) =
∑d
i=1

∂ ˆ̀

∂xi
(x) is the divergence of ˆ̀

at x [2].

The first part of the last right hand side does not depend on ˆ̀ while the two
other parts are expectations under p(x) of quantities that only depend on ˆ̀.
Thus is can we well approximated, up to a constant, by:

R̂score(ˆ̀) =
1

2n

n∑
i=1

‖ˆ̀(xi)‖2 −
1

n

n∑
i=1

(∇ · ˆ̀)(xi).

Parametric assumption. If we assume that the score is linear combination
of finitely many basis functions, we will get a consistent estimator of these
parameters. That is, we make the following assumption:

(A4) The score function `(x) is a linear combination of known basis functions

ψj(x), j = 1, . . . ,m, where ψj : Rd → Rd, that is `(x) =
m∑
j=1

ψj(x)θ∗j , for

some θ∗ ∈ Rm. We assume that the score function and its derivatives are
squared-integrable with respect to p(x).

In this paper, we consider for simplicity a parametric assumption for the score.
In order to go towards non-parametric estimation, we would need to let the
number m of basis functions to grow with n (exponentially with no added as-
sumptions), and this is an interesting avenue for future work. In simulations in
Section 5, we consider a simple set of basis function which are localized func-
tions around observations; these can approximate reasonably well in practice
most densities and led to good estimation of the e.d.r. subspace. Moreover, if
we have the additional knowledge that the components of x are statistically
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independent (potentially after linearly transforming them using independent
component analysis [18]), we can use separable functions for the scores.

We introduce the notation

Ψ(x) =

 ψ1
1(x) · · · ψ1

d(x)
...

. . .
...

ψm1 (x) · · · ψmd (x)

 ∈ Rm×d,

so that the score function ˆ̀ we wish to estimate has the form

ˆ̀(x) = Ψ(x)>θ ∈ Rd.

We also introduce the notation (∇ · Ψ)(x) =

 (∇ ·Ψ1)(x)
...

(∇ ·Ψm)(x)

 ∈ Rm, so that

(∇ · ˆ̀)(x) = θ>(∇ ·Ψ)(x).
The empirical score function may then be written as:

R̂score(θ) =
1

2
θ>
( 1

n

n∑
i=1

Ψ(xi)Ψ(xi)
>)θ − θ>( 1

n

n∑
i=1

(∇ ·Ψ)(xi)
)
, (4.1)

which is a quadratic function of θ and can thus be minimized by solving a linear
system in running time O(m3 + m2dn) (to form the matrix and to solve the
system).

Given standard results regarding the convergence of 1
n

∑n
i=1 Ψ(xi)Ψ(xi)

> ∈
Rm×m to its expectation and of 1

n

∑n
i=1(∇ · ˆ̀)(xi) ∈ Rm to its expectation, we

get a
√
n-consistent estimation of θ∗ under simple assumptions (see Theorem 2).

4.2. Score matching for sliced inverse regression: two-step approach

We can now combine our linear parametrization of the score with the SIR ap-
proach outlined in Section 3. The true conditional expectation is

E
(
`(x)|y

)
=

m∑
j=1

E
(
ψj(x)|y)θ∗j ,

and belongs to the e.d.r. subspace. We consider H different slices I1, . . . , IH , and
the following estimator, which simply replaces the true score by the estimated
score (i.e., θ∗ by θ), and highlights the dependence in θ.

The estimator V̂1,cov can be rewritten as

V̂1,cov =

n∑
i=1

n∑
j=1

αi,j
n(|Ih(i, j)| − 1)

`(xi)`(xj)
>,
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where

αi,j =

{
1 if i 6= j in the same slice
0 otherwise

Using linear property `(x) = Ψ(x)>θ:

V̂1,cov(θ) =
1

n

n∑
i=1

n∑
j=1

αi,j
|Ih(i, j)| − 1

Ψ(xi)
>θθ>Ψ(xi). (4.2)

In the two-step approach, we first solve the score matching optimization prob-
lem to obtain an estimate for the optimal parameters θ∗ and then use them to
get the k largest eigenvectors of covariance matrix V̂1. This approach works well
in low dimensions when the score function can be well approximated; otherwise,
we may suffer from the curse of dimensionality: if we want a good approximation
of the score function, we would need an exponential number of basis functions.
In Section 4.3, we consider a direct approach aiming at improving robustness.

Consistency. Let also provide the result of consistency in the case of unknown
score function under Assumption (A4) for the two-step algorithm. We will make
the additional assumptions:

(M1) The random variables Ψj
i (x) ∈ R are sub-Gaussian, i.e., such that

Eet(Ψ
j
i (x)−EΨji (x)) 6 eτ

2
Ψt

2/2, for some τΨ > 0.
(M2) The random variables (∇ ·Ψi)(x) are sub-Gaussian, i.e., such that

Eet((∇·Ψi)(x)−E(∇·Ψi)(x) 6 eτ
2
∇Φt

2/2, for some τ∇Ψ > 0.
(M3) The matrix E

[
Ψ(x)Ψ(x)>

]
is not degenerated and we let λ0 denote its

minimal eigenvalue.

Theorem 2. Let θ̂ be the estimated θ, obtained on the first step of algorithm.
Under Assumptions (A1), (A2), (A4), (L1) - (L4) and (M1), (M2), (M3),
for δ 6 1/n and n large enough, that is, n > c1 + c2 log 1

δ for some positive
constants c1 and c2 not depending on n and δ:

‖V1,cov(θ∗)−V̂1,cov(θ̂)‖∗ 6
1√
n

√
2 log

48m2d

δ
×

[
d
√
d(195τ2

η+2τ2
` )+

9m

2
E‖Ψ(x)‖22 ·‖θ∗‖

(
2τ∇Ψ

√
m

λ0
+

4‖b‖τ2
Ψ

√
m3d

λ0

)]
+O

(
1

n

)
.

with probability not less than 1− δ.

Now, let us formulate and proof non-asymptotic result about the real and the
estimated e.d.r. spaces. We need to define a notion of distance between subspaces
spanned by two sets of vectors. We use the square trace error R2(w, ŵ) [15]:

R2(w, ŵ) = 1− 1

k
tr
[
w · ŵ

]
, (4.3)
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where w ∈ Rk×d and ŵ ∈ Rk×d both have orthonormal columns. It is always
between zero and one, and equal to zero if and only if w = ŵ. This distance is
closely related to principal angles notion:

sin Θ(ŵ>w) = diag(sin(cos−1 σ1), . . . , sin(cos−1 σd),

where σ1, . . . , σd are the singular values of ŵ>w. Actually, R(w, ŵ) ·
√
k =

‖ sin Θ(ŵ>w)‖F .
We use Davis-Kahan “sin θ theorem” [27, Theorem V.3.6] in the following

form [37, Theorem 2]:

Theorem 3. Let Σ and Σ̂ ∈ Rd×d be symmetric, with eigenvalues λ1 > · · · >
λd and λ̂1, . . . , λ̂d respectively. Fix 1 6 r 6 s 6 d, let k = s − r + 1, and
let U = (ur, ur+1, . . . , us) ∈ Rd×k and Û = (ûr, ûr+1, . . . , ûs) ∈ Rd×k have

orthonormal columns satisfying Σuj = λjuj and Σ̂ûj = λ̂j ûj for j = r, . . . , s.

Let δ = inf{|λ̂−λ| : λ ∈ [λs, λr], λ̂ ∈ (−∞, λ̂s+1]∪ [λ̂r−1,+∞), where λ̂0 = +∞
and λ̂p+1 = −∞. Assume, that δ > 0, then:

R(U, Û) 6
‖Σ̂− Σ‖F
δ
√
k

. (4.4)

Using Corollary 4.1 and its discussion in [30], we can derive, that R(w, ŵ)6
‖V1(θ∗)− V̂1(θ̂)‖F
|λk − λ̂k+1|

√
k

, where w and ŵ are the real and the estimated e.d.r. spaces

respectively. Using Weyl’s inequality [27] : if ‖V1(θ∗)−V̂1(θ̂)‖2 < ε ⇒ |λ̂i−λi| <
ε for all i = 1, . . . , d and taking ε = (λk − λk+1)/2 = λk/2 we get:

R(w, ŵ) 6
2‖V1(θ∗)− V̂1(θ̂)‖∗

λk
√
k

, if ‖V1(θ∗)− V̂1(θ̂)‖F < λk/2,

because ‖ · ‖F 6 ‖ · ‖∗. We can now formulate our main theorem for the analysis
of the SADE algorithm:

Theorem 4. Consider assumptions (A1), (A2), (A4), (L1)- (L4), (M1),
(M2), (M3) and:

(K1) The matrix V1 has a rank k: λk > 0.

For δ 6 1/n and n large enough: n > c1 +c2 log 1
δ for some positive constants

c1 and c2 not depending on n and δ:

R(ŵ, w) 6
2

√
nλk
√
k

√
2 log

48m2d

δ
×[

d
√
d(195τ2

η+2τ2
` )+

9m

2
E‖Ψ(x)‖22 ·‖θ∗‖

(
2τ∇Ψ

√
m

λ0
+

4‖b‖τ2
Ψ

√
m3d

λ0

)]
+O

(
1

n

)
.

with probability not less than 1− δ.
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We thus obtain a convergence rate in 1/
√
n, with an explicit dependence on all

constants of the problem. The dependence on dimension d and number of basis

functions m is of the order (forgetting logarithmic terms): O( d
3/2

n1/2 + m5/2

n1/2 ‖θ∗‖).
For k > 1, our dependence on the sample size n is improved compared to existing
work such as [11] (while it matches the dependence for k = 1 with [16]), but this
comes at the expense of assuming that the score functions satisfy a parametric
model.

For a fixed number of basis functions m, we thus escape the curse of dimen-
sionality as we get a polynomial dependence on d (which we believe could be
improved). However, when no assumptions are made on score functions, the
number m and potentially the norm ‖θ∗‖ has to grow with the number of obser-
vations n. We are indeed faced with a traditional non-parametric estiamation
problem, and the number m will need to grow when n grows depending on the
smoothness assumptions we are willing to make on the score function, with an
effect on θ∗ (and probably λ0, which we will neglect in the discussion below).
While a precise analysis is out of the scope of the paper and left for future work,
we can make an informal argument as follows: in order to approximate the score
with precision ε with a set of basis function where ‖θ∗‖ is bounded, we need
m(ε) basis functions. Thus, we end up with two sources of errors, an approx-
imation error ε and an estimation error of order O(m(ε)5/2/n1/2). Typically,
if we assume that the score has a number of bounded derivatives proportional
to dimension or if we assume the input variables are independent and we can
thus estimate the score independently for each dimension, m(ε) is of the order
1/ε1/r, where r is independent of the dimension, leading to an overall rate which
is independent of the dimension.

4.3. Score matching for SIR: direct approach

We can also try to combine these two steps to try to avoid the “curse of dimen-
sionality”. Our estimation of the score, i.e., of the parameter θ is done only to be
used within the SIR approach where we expect the matrix V̂1,cov to have rank

k. Thus when estimating θ by minimizing R̂score(θ), we may add a regularization

that penalizes large ranks for V̂1,cov(θ) = 1
n

∑n
i,j=1

αi,j
|Ih(i,j)|−1Ψ(xi)

>θθ>Ψ(xi),

where we highlight the dependence on θ ∈ Rm. By enforcing the low-rank con-
straint, our aim is to circumvent a potential poor estimation of the score func-
tion, which could be enough for the task of estimating the e.d.r. space (we see
a better behavior in our simulations in Section 5).

Introduce matrix L(θ) = (Ψ(xi)
>θ, . . . ,Ψ(xn)>θ) ∈ Rd×n and A ∈ Rn×n

with Ai,j =
αi,j

n·(|Ih(i,j)|−1) and A(θ) = L ·A1/2 ∈ Rd×n.

We may then penalize the nuclear norm of A(θ), or potentially consider norms
that take into account that we look for a rank k (e.g., the k-support norm on
the spectrum of A(θ) [25]). We have,

‖A(θ)‖∗ = tr(A(θ)A(θ)>)1/2 = tr
[
V̂1,cov(θ)1/2

]
.
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Combining two penalties, we have a convex optimization task:

R̂(θ) = R̂score(θ) + λ · tr
[
V̂1,cov(θ)1/2

]
. (4.5)

Efficient algorithm. Following [3], we consider reweighted least-squares al-
gorithms. The trace norm admits the variational form (see [4]):

‖W‖∗ =
1

2
inf
D�0

tr(WTD−1W +D).

The optimization problem (4.5) can be reformulated in the following way:

θ ← argmin
θ

R̂score(θ) +
λ

2
tr
(
A(θ)>D−1A(θ)

)
and

D ←
(
A(θ)A(θ)> + εId

)1/2
.

Note that the objective function is a quadratic function of θ. Decompose
matrix A in the form:

A(θ) =

m∑
k=1

θkAk, where Ak ∈ Rd×n.

Rearrange the regularizer term:

tr
(
A(θ)>D−1A(θ)

)
=

m∑
k=1

m∑
l=1

tr
[
θkA

>
k D
−1Alθl

]
= θ>Yθ,

where
Yk,l = tr

[
A>k D

−1Al
]
.

Introduce notation:

Ã =
(

vect(A1), . . . , vect(Am)
)
∈ Rdn×m

B̃ =
(

vect(D−1A1), . . . , vect(D−1Am)
)
∈ Rdn×m,

then
Y = Ã>B̃.

We can now estimate the complexity of this algorithm. Firstly we need to
evaluate the quadratic form in R̂score(θ): it is a summation of n multiplications
of m × d and d × m matrices. Complexity of this step is O(nm2d). Secondly,
we need to evaluate matrix matrices D−1, Ã and B̃ using O(d3), O(dHm) and
O(m × d2H) operations respectively. Next, we need to evaluate matrix Y, us-
ing O(dnm2) operations. Finally, evaluating A(θ) requires O(dnm) operations,
A(θ)A(θ)> requires O(d2n) operations and evaluation of D requires O(d3) oper-
ations. Combining complexities, we get O(md2n+d3 +nm2d) operations, which
is still linear in n.
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5. Experiments

In this section we provide numerical experiments for SADE, PHD+ and SPHD
on different functions f . We denote the true and estimated e.d.r. subspaces as
E and Ê respectively, defined from w and ŵ.

5.1. Known score functions

Consider a Gaussian mixture model with 2 components in Rd:

p(x) =

2∑
i=1

θi ·
1

(2π)d/2 · |Σi|1/2
· exp

{
− 1

2
(X − µi)>Σ−1

i (X − µi)

}
, (5.1)

where θ = (6/10, 4/10), µ1 = (−1, . . . ,−1︸ ︷︷ ︸
d

), µ2 = (1, . . . , 1︸ ︷︷ ︸
d

), Σ1 = Id, Σ2 = 2 ·Id.

Contour lines of this distribution, when d = 2 are shown in Figure 1.
The error ε has a standard normal distribution. To estimate the effectiveness

of an estimated e.d.r. subspace, we use the square trace error R2(w, ŵ)

R2(w, ŵ) = 1− 1

k
tr
[
P · P̂

]
,

where w and ŵ are the real and the estimated e.d.r. vectors respectively and P
and P̂ are projectors, corresponding to these matrices. Note, that (4.3) is the
special case of this formula with orthonormal matrices.

X
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2
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−4

−3

−2

−1

0

1

2

3

4

Fig 1. Contour lines of Gaussian mixture
pdf in 2D case.
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Fig 2. Mean and standard deviation of
R2(E, Ê) divided by 10 for the rational
function (5.2).

To show the dominance of SADE over SIR (which should only work for el-
liptically symmetric distributions), we consider the rational multi-index model
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of the form
d = 10; y =

x1

1/2 + (x2 + 2)2
+ σ · ε. (5.2)

Here the real e.d.r. space is generated by 2 specific vectors: (1, 0, 0, . . . , 0) and
(0, 1, 0, . . . , 0). The number of slices is H = 10, and we consider numbers of ob-
servations n from 210 to 216 equally spaced in logarithmic scale, and we conduct
100 replicates to obtain means and standard deviations of the logarithms of
square trace errors divided by

√
100 = 10 (to assess significance of differences)

as shown in Figure 2. Even in this simple model, the ordinary SIR algorithm
does not work properly, because the distribution of the inputs x has no elliptical
symmetry. When n → ∞, the squared trace error tends to some nonzero con-
stant depending on the properties of the density function, whereas SADE shows
good performance with slope −1 (corresponding to a

√
n-consistent estimator).

Now, we compare the moments methods SADE, PHD+, SPHD. Although
the goal of this paper is to compare moment matching techniques, we compare
them with the state-of-the-art MAVE method [34], [31], [32]. It is worth noting
two properties which we have already discussed concerning these methods:

1. Sliced methods have a wider application area than unsliced ones: SADE
is stronger than ADE and SPHD is stronger than PHD+.

2. SADE can not recover the entire e.d.r. space in several cases, for example,
a classification task or symmetric cases. For those cases, we should use
second-order methods (i.e., methods based on S2).

3. MAVE works better, but the goal of this paper is to compare moment-
matching techniques. In Figure 11, we provide examples where MAVE
suffers from the curse of dimensionality and performs worse that moment-
matching methods.

We conduct 3 experiments, where H = 10, d = 10, the error term ε has a
normal standard distribution; numbers of observation n from 210 to 216 equally
spaced in logarithmic scale and we made 10 replicas to evaluate sample means
and variations:

• Rational model of the form:

y =

k∑
i=1

tanh(8xi − 16) · i+ tanh(8xi + 16) · (k + 1− i) + ε/4, (5.3)

where the effective reduction subspace dimension is k = 2.
Results are shown of Figure 3 and we can see, that first-order method
SADE works better, than second-order SPHD + and SPHD works better,
than PHD+, that is slicing make the method more robust.

• Classification problem of the form

y = 1x2
1+2x2

2>4 + ε/4. (5.4)

We can see, that the error of SADE is close to 0.5 (Figure 4). This means
that the method finds only one direction in the e.d.r. space. Moreover,
SPHD gave better results than PHD+.
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• Quadratic model of the form

d = 10; y = x1(x1 + x2 − 3) + ε. (5.5)

Both SADE and SPHD show a good performance (Figure 5), while PHD+
can not recover the desired projection due to linearity of the function g.
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Fig 3. Mean and standard deviation of
R2(E, Ê) divided by

√
10 for the rational

function (5.3) with σ = 1/4.

log2 n
10 11 12 13 14 15

lo
g
2

1 R
2
! E;
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R2(E, Ê) divided by

√
10 for the quadratic

(5.2) with σ = 1/4.

5.2. Unknown score functions

Now, we conduct numerical experiments for SADE with unknown score func-
tions. We consider a “toy” experiment and first examine results of the 2-step
algorithm. We consider again a Gaussian mixture model (5.1) with 2 compo-
nents in R2, where θ = (0.6, 0.4), µ1 = (−0.5, 0.5), µ2 = (0.5, 0.5), Σ1 = 0.3 · I2,
Σ2 = 0.4 · I2, with y = sin(x1 + x2) + ε, where error ε has a standard normal
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distribution. We choose these parameters of Gaussian mixture to make sure,
that the probability of the vector X to be in the square [−2, 2]2 is close to 1.

We chose 100 Gaussian kernels as basis functions:

ψi,j(x) = ∇ exp

{
− ‖X −Xi,j‖2

2h2

}
, 1 6 i, j 6 10,

where Xi,j form the uniform grid on the square [−2, 2]2 (note that this does not
imply any notion of Gaussianity for the underlying density, and the Gaussian
kernel here could be replaced by any differentiable local function).

In practice, Ψ̂ in (4.1) is close to be degenerated, and we use a regularized

estimator θ∗ = −
(
Ψ̂ + αIT

)−1 · Φ̂ instead.
We choose α = 0.01, σ = 1 and conduct 100 replicates with numbers of

observations n from 210 to 216 equally spaced in logarithmic scale. The results
of the experiments are presented in Figure 6: the square trace error tends to
zero as n increases.
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Fig 6. Square trace error R(E, Ê) for different
sample sizes.
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Fig 7. Quadratic model, d = 10, n = 1000.
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Fig 8. Rational model, d = 10, n = 1000.
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Fig 9. Rational model, d = 20, n = 2000.

In high dimensions, we can not use a uniform grid because of the curse of
dimensionality. Instead of this, we will use n Gaussian kernels, centered in the
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sample points Xi. Note here that we can only recover an approximate score
function, but our goal is the estimation of the e.d.r. subspace.

We use our reweighted least-squares algorithm to solve the convex problem
(4.5). We conduct several experiments on functions from the previous section.

We plot the performance as a function of the kernel bandwidth h to assess
the robustness of the methods. On Figure 7 we provide the relationship between
the square trace error and h for quadratic model (5.5) for d = 10 and n = 1000.
In Figures 8, 9, 10, we provide the relationship between the square trace error
and σ for rational model (5.2) for d = 10, n = 1000; d = 20, n = 2000 and
d = 50, n = 5000. We see that for large d, the one-step algorithm is more robust
than the two-step algorithm. Moreover, the experiments show that even with
weak score functions, correct estimation of the e.d.r. space can be performed.

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

R
2
(�
,�̂
)

SADE with true score

1�step algorithm
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Fig 10. Rational model, d = 50, n = 5000.

Comparison with MAVE. We consider the rational model (5.3) with n =
10000, k = 10 and dimension d of data in the range [20, 150]. Probability den-
sity p(x) has independent components, each of which has a form of mixture of
2 Gaussians with weights (6/10, 4/10), means (−1, 1) and standard variations
(1, 2). The results for MAVE, SADE with known score and for SADE with un-
known score are shown on the Figure 11. We can see, that both SADE with
known and unknown scores lose in case of low dimension of data, but more
resistant to the curse of dimensionality (as expected as MAVE relies on non-
parametric estimation in a space of dimension k, which is here larger). Moreover,
the complexity of our moment-matching technique is linear in the number of ob-
servations n, while MAVE is superlinear.

6. Conclusion

In this paper we consider a general non-linear regression model and the depen-
dence on a unknown k-dimensional subspace assumption. Our goal was direct
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Fig 11. Increasing dimensions, with rational model 5.3, n = 10000, k = 10, d = 20 to 150.

estimation of this unknown k-dimensional space, which is often called the effec-
tive dimension reduction or e.d.r. space. We proposed new approaches (SADE
and SPHD), combining two existing techniques (sliced inverse regression (SIR)
and score function-based estimation). We obtained consistent estimation for
k > 1 only using the first-order score and proposed explicit approaches to learn
the score from data.

It would be interesting to extend our sliced extensions to learning neural
networks: indeed, our work focused on the subspace spanned by w and cannot
identify individual columns, while [20] showed that by using proper tensor de-
composition algorithms and second-order score functions, columns of w can be
consistently estimated (in polynomial time).
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Appendix A: Appendix. Proofs

In this appendix, we provide proofs which were omitted in the main paper.

A.1. Probabilistic lemma

Let us first formulate and proof an auxiliary lemma about tail inequalities:

Lemma 5. Let X be a non-negative random variable such that for some positive
constants A and B, and all p:

EXp 6 (A
√
p+Bn1/pp2)p.

Then, for t > (log n)/2:

P(X > 3A
√
t+ 3Bn1/tt2) 6 3e−t.

Proof. By Markov’s inequality, for every non-negative integer p:

P(X > 3A
√
p+ 3Bn1/pp2) = P(Xp > [3A

√
p+ 3Bn1/pp2]p) 6

6
[A
√
p+Bn1/pp2]p

[3A
√
p+ 3Bn1/pp2]p

6 e−p.

Consider any t > (log n)/2 and p = [t], then:

P(X > 3A
√
t+ 3Bn1/tt2) 6 P(X > 3A

√
p+ 3Bn1/pp2) 6 e−p 6 3e−t,

because function f(t) = 3A
√
t+ 3Bn1/tt2 increases on [(log n)/2; +∞).

A.2. Proof of theorem 1

Proof. Let
(
y(i), x(i)

)
, i = 1, . . . , n be the ordered data set, where y(1) 6

y(2) 6 . . . 6 y(n). The x(i) are called the concomitants of order statistics by

Yang [36]. Introduce double subscripts: `(h,1) = `
(
x(2h−1)

)
, `(h,2) = `

(
x(2h)

)
,

y(h,1) = y(2h−1) and y(h,2) = y(2h).
Introduce firstly alternative matrix (under the weak assumptoin of its existance):

V1,E = E
[
Cov(S1(x)|y)

]
.

We have the following estimator for this matrix, for c = 2, and H = n/c = n/2:

V̂1,E =
1

n

H∑
h=1

(
`(h,1) − `(h,2)

)(
`(h,1) − `(h,2)

)>
,

Firstly, we estimate a norm of V̂1,E − V1,E and afterwards a norm of V̂1,cov −
V1,cov.
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Thus, the deviation from the population version, may be split into four terms
as follows:

V̂1,E − V1,E =
1

n

H∑
h=1

(
`(h,1) − `(h,2)

)(
`(h,1) − `(h,2)

)> − Eηη>

=
1

n

H∑
h=1

(
η(h,1) − η(h,2)

)(
η(h,1) − η(h,2)

)> − Eηη>

+
1

n

H∑
h=1

(
m(y(h,1))−m(y(h,2))

)(
η(h,1) − η(h,2)

)>
+

1

n

H∑
h=1

(
η(h,1) − η(h,2)

)(
m(y(h,1))−m(y(h,2))

)>
+

1

n

H∑
h=1

(
m(y(h,1))−m(y(h,2))

)(
m(y(h,1))−m(y(h,2))

)>
= T4 + T3 + T2 + T1.

We now bound each term separately.

Bounding T1. We have

T1 4
1

n

H∑
h=1

L2(y(h,1) − y(h,2))(y(h,1) − y(h,2))
>

trT1 = ‖T1‖∗ 6
1

n

H∑
h=1

L2 · diameter(y1, . . . , yn)|y(h,1) − y(h,2)|

6
1

n
L2 · diameter(y1, . . . , yn)2.

The range cannot grow too much, i.e., as log n. Indeed, assuming without loss of
generality that Ey = 0, we have max{y1, . . . , yn} 6 u/2 and min{y1, . . . , yn} >
−u/2 implies that the range is less than u, and thus, P(diameter(y1, . . . , yn) >
u) 6 P(max{y1, . . . , yn} > u/2) + P(min{y1, . . . , yn} 6 −u/2) 6 nP(y > u/2) +
nP(y < −u/2) 6 2n exp(−u2/8τ2

y ) by using sub-Gaussianity. Then, by selecting
u2/8τ2

y = log(2n)+log(8/δ), with get with probability greater then 1−δ/8 that

diameter(y1, . . . , yn) 6 2
√

2τy
√

log(2n) + log(8/δ).

Bounding T2 and T3. We also have

max{‖T2‖∗, ‖T3‖∗} 6
1

n

H∑
h=1

L|y(h,1)y(h,2)| · diameter(η1, . . . , ηn)

6
1

n
L · diameter(y1, . . . , yn) · diameter(η1, . . . , ηn).
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Like for T1, the ranges cannot grow too much, i.e., as log n. Similarly
P(diameter((ηj)1, . . . , (ηj)n) > u) 6 nP((ηj) > u/2) + nP((ηj) < −u/2) 6
2n exp(−u2/8τ2

η ). We thus with get with probability greater then 1 − δ/(8d)

that maxj∈{1,...,d} diameter((ηj)1, . . . , (ηj)n) 6 2
√

2τη
√

log(2n) + log(8d/δ).
Thus combining the two terms above, with probability greater than 1− δ/4,

‖T1‖∗ + ‖T2‖∗ + ‖T3‖∗ 6
8L(Lτ2

y + 2τητy
√
d)

n

(
log(2n) + log(8d) + log(1/δ)

)
.

Note the term in
√
d, which corresponds to the definition of the diameter

diameter(η1, . . . , ηn) in terms of the `2-norm.

Bounding T4. We have:

T4 =
1

n

H∑
h=1

{
η(h,1)η

>
(h,1) + η(h,2)η

>
(h,2) − η(h,2)η

>
(h,1) − η(h,1)η

>
(h,2)

}
− Eηη>

=
1

n

H∑
h=1

{
− η(h,2)η

>
(h,1) − η(h,1)η

>
(h,2)

}
+

1

n

n∑
i=1

ηiη
>
i − Eηη> = T4,1 + T4,2.

For the second term T4,2 above, if we select any element indexed by a, b, then

1

n

n∑
i=1

(ηi)a(ηi)b − Eηaηb.

Using [5, Theorem 2.1], we get

E[(ηi)a(ηi)b]
2 6

√
E(ηi)4

aE(ηi)4
b 6 4(2τ2

η )2 = 16τ4
η ,

and

E[|(ηi)a(ηi)b|q] 6
√

E(ηi)
2q
a E(ηi)

2q
b 6 2q!(2τ2

η )q =
q!

2
(2τ2

η )q−216τ4
η .

We can then use Bernstein’s inequality [5, Theorem 2.10], to get that with
probability less than e−t then

1

n

n∑
i=1

(ηi)a(ηi)b − Eηaηb > 2
τ2
η

n
t+
√

32τ4
η

√
t/
√
n.

We can also get upper bound for this quantity, using −ηa instead of ηa. Thus,

with t = log 8d2

δ , we get that all d(d + 1)/2 absolute deviations are less than

2τ2
η

(
log 8d2

δ

n +

√
2 log 8d2

δ

n

)
, with probability greater than 1 − δ/4. This im-

plies that the nuclear norm of the second term is less than 2d
√
dτ2
η

(
log 8d2

δ

n +
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2 log 8d2

δ

n

)
, because for any matrix K ∈ Rd×d : ‖K‖∗ 6 d

√
d‖K‖∞, where

‖K‖∞ = maxj,k |Kjk|.

For the first term, we consider Z =
H∑
h=1

(η(h,2))a(η(h,1))b, and consider con-

ditioning on Y = (y1, . . . , yn). A key result from the theory of order statistics
is that the n random variables η(h,2), η(h,1), h ∈ {1, . . . , n/2} are independent
given Y [36]. This allows us to compute expectations.

Using Rosenthal’s inequality [5, Theorem 15.11] conditioned on Y, for which
we have E((η(h,2))a(η(h,1))b|Y) = 0, we get:[

E(|Z|p|Y)
]1/p

6

6
√

8p
[∑

h

E
[
((η(h,2))

2
a(η(h,1))

2
b |Y

]]1/2
+ p · 2

[
Emax

h

[
((η(h,2))

p
a(η(h,1))

p
b |Y

]]1/p
6
√

8p
[∑

h

E
[
((η(h,2))

2
a(η(h,1))

2
b |Y

]]1/2
+ p · 2

[∑
h

E
[
((η(h,2))

p
a(η(h,1))

p
b |Y

]]1/p
.

By taking the p-th power, we get:

E(|Z|p|Y) 6 2p−1
√

8p
p[∑

h

E
[
((η(h,2))

2
a(η(h,1))

2
b |Y

]]p/2
+ 2p−1pp · 2p

∑
h

E
[
((η(h,2))

p
a(η(h,1))

p
b |Y

]
.

By now taking expectations with respect to Y, we get, using Jensen’s inequality:

E|Z|p 6 2p−1
√

8p
p
E
([∑

h

(η(h,2))
2
a(η(h,1))

2
b

]p/2)
+ 2p−1pp · 2p

∑
h

E
[
((η(h,2))

p
a(η(h,1))

p
b

]
6 2p−1

√
8p
p
E
([1

2

∑
h

(η(h,2))
4
a + (η(h,1))

4
b

]p/2)
+ 2p−1pp · 2p · 1

2

∑
h

E
[
((η(h,2))

2p
a + (η(h,1))

2p
b

]
6 2p−1

√
8p
p
E
([∑

i

(ηi)
4
a + (ηi)

4
b

]p/2)
+ 2p−1pp · 2p

∑
i

E
[
((ηi)

2p
a + (ηi)

2p
b

]
.

Because summing over all order statistics is equivalent to summing over all
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elements. Thus, using the bound on moments of (ηi)
2
b , we get:

E|Z|p 6 2p−1
√

8p
p
2p/2−1E

([∑
i

(ηi)
4
a

]p/2)
+ 2p−1

√
8p
p
2p/2−1E

([∑
i

(ηi)
4
b

]p/2)
+ 2p−1pp · 2pn · 4p!(2τ2

η )p

We can now use [5, Theorem 15.10], to get[
E
([∑

i

(ηi)
4
a

]p/2)]2/p
6 2E

[∑
i

(ηi)
4
a

]
+
p

2

(
E
[

max
i

((ηi)
4
a)p/2

])2/p
6 2E

[∑
i

(ηi)
4
a

]
+
p

2

(
E
[∑

i

((ηi)
4
a)p/2

])2/p
6 2n× 4(2τ2

η )2 +
p

2
n2/pEη2p

i

6
(
32n+ n2/p p

2
(2p!)2/p

)
τ4
η

6
(
32n+ n2/pp3

)
τ4
η .

Thus

E|Z|p 6 2p
√

8p
p
2p/2−1

(
32n+ n2/pp3

)p/2
τ2p
η + 2p−1pp · 2pn · 4p!(2τ2

η )p

6 23p−1pp/2 · 2p/2−1
(
(32n)p/2 + n · p3p/2

)
τ2p
η + 23p+1τ2p

η np2p

6
(
26p−2pp/2np/2 + np2p[27p/2−2 + 23p+1]

)
τ2p
η

6
(

64p · pp/2np/2 + 19p · np2p
)
τ2p
η .

Thus

(E|Z|p)1/p 6
(

64 · √pn1/2 + 19 · n1/pp2
)
τ2
η .

Thus, for any δ 6 1/n, using Lemma 5 for random variable Z/n with t =

log( 12d2

δ ) > (log n)/2 and we obtain:

P

[∣∣∣∣Zn
∣∣∣∣ > 192τ2

η√
n

√
t+

57τ2
η

n
n1/tt2

]
6 3e−t ⇒

P

[∣∣∣∣Zn
∣∣∣∣ > 192τ2

η√
n

√
log( 12d2

δ ) +
57τ2

η

n
n1/ log( 12d2

δ ) log2( 12d2

δ )

]
6

δ

4d2
⇒

P

[∣∣∣∣Zn
∣∣∣∣ > 192τ2

η√
n

√
log( 12d2

δ ) +
155τ2

η

n
log2( 12d2

δ )

]
6

δ

4d2
.
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Combining all terms T1, T2, T3, T4,1 and T4,2 we get with probability not less
than 1− δ:

‖V̂1,E−V1,E‖∗ 6
1

n
·
[
8L(Lτ2

y + 2τητy
√
d) · log( 16dn

δ )+ 2d
√
dτ2
η log 8d2

δ + 155τ2
ηd log2( 12d2

δ )

]
+

1√
n

[
2d
√
dτ2
η

√
2 log 8d2

δ + 192τ2
ηd
√

log 12d2

δ

]
.

Rearranging terms and replacing δ by δ/2, with probability not less, than 1−δ/2:

‖V̂1,E−V1,E‖∗ 6
195d

√
dτ2
η√

n

√
log

24d2

δ
+

8L2τ2
y + 16τητyL

√
d+ 157τ2

ηd
√
d

n
log2 32d2n

δ
.

Using expression:

V1,cov + V1,E = cov[`1(x)],

we can suggest estimator for V1,cov as V̂1,cov = 1
n

n∑
i=1

`(xi)`(xi)
> − V̂1,E.

Applying the triangle inequality:

‖V̂1,cov − V1,cov‖∗ 6 ‖V̂1,E − V1,E‖∗ + ‖ 1

n

n∑
i=1

`(xi)`(xi)
> − E(`(x)`(x)>)‖∗.

To estimate the second term, we can use the same arguments as for bounding

T4,2: with probability greater than 1− δ/2, ‖ 1
n

n∑
i=1

`(xi)`(xi)
>−E(`(x)`(x)>)‖∗

is less than 2d
√
dτ2
`

(
log 4d2

δ

n +

√
2 log 4d2

δ

n

)
. Finally, combining this bound with

bound for ‖V̂1,cov − V1,cov‖∗:

‖V̂1,cov − V1,cov‖∗ 6
d
√
d(195τ2

η + 2τ2
` )

√
n

√
log

24d2

δ
+

8L2τ2
y + 16τητyL

√
d+ (157τ2

η + 2τ2
` )d
√
d

n
log2 32d2n

δ
.

A.3. Proof of Theorem 2

Proof. Using triangle inequality, we get:

‖V1,cov(θ∗)− V̂1,cov(θ̂)‖∗ 6

‖V1,cov(θ∗)− V̂1,cov(θ∗)‖∗ + ‖V̂1,cov(θ∗)− V̂1,cov(θ̂)‖∗ = F1 + F2. (A.1)
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Theorem 1 supplies us with non-asymptotic analysis for the F1 term: with prob-
ability not less then 1− δ/2:

‖V̂1,cov(θ∗)− V1,cov(θ∗)‖∗ 6
d
√
d(195τ2

η + 2τ2
` )

√
n

√
log

48d2

δ
+

8L2τ2
y + 16τητyL

√
d+ (157τ2

η + 2τ2
` )d
√
d

n
log2 64d2n

δ
.

(A.2)

For the second term, let us firstly analyse the norm ‖θ∗ − θ̂‖. For simplicity,
introduce notation: Ĉ = 1

n

∑n
i=1 Ψ(xi)Ψ(xi)

> ∈ Rm×m, C = E
[
Ψ(x)Ψ(x)>

]
∈

Rm×m, b̂ = 1
n

∑n
i=1(∇ ·Ψ)(xi) ∈ Rm and b = E

[
(∇ ·Ψ)(x)

]
∈ Rm

Let us estimate ‖Ĉ − C‖F and ‖b̂− b‖.
Introduce notation:

Cca,b =
1

n

n∑
i=1

Ψa
c (xi) ·Ψb

c(xi)− E
[
Ψa
c (x) ·Ψb

c(x)
]
.

It can be shown like in the bounding of T4,2 term in the Theorem’s 1 proof,
using [5, Theorem 2.1] and Bernstein’s inequality [5, Theorem 2.10] that with
probability less then e−t:

Cca,b > 2
τ2
Ψ

n
t+
√

32τ4
Ψ

√
t/
√
n.

Taking t = log 2m2d
δ we show that:

P

‖Ĉ − C‖F > 2τ2
Ψ

√
m3d

(
log 2m2d

δ

n
+

√
2 log 2m2d

δ

n

) < δ.

According to assumption (M2) and Hoeffding bound:

P
[
‖b̂i − bi‖ >

t

n

]
6 e

−t2

2τ2
∇Ψ

n ,

combining inequalities for all m components of b, we have:

P
[
‖b− b̂‖ > τ∇Ψ

√
m√

n

√
log m2

δ2

]
6 δ.

Now, let estimate ‖θ∗ − θ̂‖:

θ∗ − θ̂ = Ĉ−1b̂− C−1b = Ĉ−1(b̂− b) + (Ĉ−1 − C−1)b⇒

‖θ∗ − θ̂‖ 6 ‖b̂− b‖
λmin(Ĉ)

+
‖b‖2 · ‖C − Ĉ‖op

λmin(C) · λmin(Ĉ)
.
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For n large enough (for some constants c1 and c2, not depending on n and δ:

n > c1+c2 log 1
δ ) ‖Ĉ−C‖ 6 λmin

2
with probability more, than 1−δ/12 hence for

this n: λmin(Ĉ) >
λmin(C)

2
, hence, combining 3 estimations for ‖b̂−b‖, ‖Ĉ−C‖

and for λmin(Ĉ), we obtain estimation for ‖θ∗ − θ̂‖: with probability not less,
than 1− δ/4:

‖θ∗ − θ̂‖ 6

2τ∇Ψ
√
m√

nλmin(C)

√
2 log 12m

δ +
2‖b‖

λ2
min(C)

· 2τ2
Ψ

√
m3d

(
log 24m2d

δ

n
+

√
2 log 24m2d

δ

n

)
(A.3)

Consider now (a, b) element of V̂1,cov(θ∗)− V̂1,cov(θ̂) (using 4.2):

[
V̂1,cov(θ∗)− V̂1,cov(θ̂)

]
a,b

=
1

n

n∑
i,j=1

αi,j
|Ih(i, j)| − 1

m∑
α,β=1

Ψ(xi)
α
aΨ(xj)

β
b ·|θ
∗
αθ
∗
β−θ̂αθ̂β | 6

1

2n

n∑
i,j=1

αi,j
|Ih(i, j)| − 1

m∑
α,β=1

[[
Ψ(xi)

α
a

]2
+
[
Ψ(xj)

β
b

]2] · |θ∗αθ∗β − θ̂αθ̂β | 6
m∑

α,β=1

1

2n

[
n∑
i=1

[Ψ(xi)
α
a ]

2
+

n∑
i=1

[
Ψ(xi)

β
b

]2]
·
∣∣θ∗αθ∗β − θ̂αθ̂β∣∣,

because every row of binary matrix
{
αi,j
}
i,j=1,n

has exactly |Ih(i, j)| − 1 non-

zero elements.
Now, let us estimate desired norm:

‖V̂1,cov(θ∗)−V̂1,cov(θ̂)‖∗ 6 m·
n∑
k=1

d∑
l=1

n∑
i=1

|Ψk
l (xi)|2

n
·
(
2‖θ∗‖+‖θ̂−θ∗‖

)
·‖θ̂−θ∗‖

(A.4)
Using again [5, Theorem 2.1] and Bernstein’s inequality [5, Theorem 2.10]

with probability not less then 1− δ/8:

n∑
k=1

d∑
l=1

n∑
i=1

|Ψk
l (xi)|2

n
6 E‖Ψ(x)‖22 + 2mdτ2

ψ

(
log 16md

δ

n
+

√
2 log 16md

δ

n

)
(A.5)

For n large enough (for some constants c1 and c2, not depending on n and δ:
n > c1 + c2 log 1

δ ):

n∑
k=1

d∑
l=1

n∑
i=1

|Ψk
l (xi)|2

n
6

3

2
E‖Ψ(x)‖22 with probability no less then 1− δ/8,
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and (
2‖θ∗‖+ ‖θ̂ − θ∗‖

)
6 3‖θ∗‖ with probability no less then 1− δ/8

‖V̂1,cov(θ∗)− V̂1,cov(θ̂)‖∗ 6 m · 9

2
E‖Ψ(x)‖22 · ‖θ∗‖·[

2τ∇Ψ
√
m√

nλmin(C)

√
2 log 12m

δ +
2‖b‖

λ2
min(C)

· 2τ2
Ψ

√
m3d

(
log 24m2d

δ

n
+

√
2 log 24m2d

δ

n

)]
with probability not less then 1− δ/2.

Combining and simplifying obtained inequality and (A.2) we obtain final in-
equality: with probablility not less, then 1− δ:

‖V1,cov(θ∗)− V̂1,cov(θ̂)‖∗ 6
1√
n

√
2 log

48m2d

δ
×

[
d
√
d(195τ2

η+2τ2
` )+

9m

2
E‖Ψ(x)‖22 ·‖θ∗‖

(
2τ∇Ψ

√
m

λ0
+

4‖b‖τ2
Ψ

√
m3d

λ0

)]
+O

(
1

n

)
.
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