S. E. Hufton, I. G. Jennings, and R. G. Cotton, Structure and function of the aromatic amino acid hydroxylases, Biochemical Journal, vol.311, issue.2, pp.353-366, 1995.
DOI : 10.1042/bj3110353

M. I. Flydal and A. Martinez, Phenylalanine hydroxylase: Function, structure, and regulation, IUBMB Life, vol.194, issue.Suppl:S2, pp.341-349, 2013.
DOI : 10.1002/iub.1150

G. Zhao, T. Xia, J. Song, and R. A. Jensen, Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster., Proc. Natl. Acad. Sci. USA 91, pp.1366-1370, 1994.
DOI : 10.1073/pnas.91.4.1366

H. Erlandsen, Structural Comparison of Bacterial and Human Iron-dependent Phenylalanine Hydroxylases: Similar Fold, Different Stability and Reaction Rates, Journal of Molecular Biology, vol.320, issue.3, pp.645-661, 2002.
DOI : 10.1016/S0022-2836(02)00496-5

H. K. Leiros, Structure of Phenylalanine Hydroxylase from Colwellia psychrerythraea 34H, a Monomeric Cold Active Enzyme with Local Flexibility around the Active Site and High Overall Stability, Journal of Biological Chemistry, vol.282, issue.30, pp.21973-21986, 2007.
DOI : 10.1074/jbc.M610174200

M. I. Flydal, Phenylalanine Hydroxylase from Legionella pneumophila Is a Thermostable Enzyme with a Major Functional Role in Pyomelanin Synthesis, PLoS ONE, vol.7, issue.9, p.46209, 2012.
DOI : 10.1371/journal.pone.0046209.s003

A. Pribat, Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts, The Plant Cell, vol.22, issue.10, pp.3410-3422, 2010.
DOI : 10.1105/tpc.110.078824

URL : https://hal.archives-ouvertes.fr/hal-00592184

H. Wang, Role of the Phenylalanine-Hydroxylating System in Aromatic Substance Degradation and Lipid Metabolism in the Oleaginous Fungus Mortierella alpina, Applied and Environmental Microbiology, vol.79, issue.10, pp.3225-3233, 2013.
DOI : 10.1128/AEM.00238-13

J. Siltberg-liberles, I. H. Steen, R. M. Svebak, and A. Martinez, The phylogeny of the aromatic amino acid hydroxylases revisited by characterizing phenylalanine hydroxylase from Dictyostelium discoideum, Gene, vol.427, issue.1-2, pp.86-92, 2008.
DOI : 10.1016/j.gene.2008.09.005

L. F. Lye, S. O. Kang, J. D. Nosanchuk, A. Casadevall, and S. M. Beverley, Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major, Molecular and Biochemical Parasitology, vol.175, issue.1, pp.58-67, 2011.
DOI : 10.1016/j.molbiopara.2010.09.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987234

S. C. Kwok, F. D. Ledley, A. G. Dilella, K. J. Robson, and S. L. Woo, Nucleotide sequence of a full-length complementary DNA clone and amino acid sequence of human phenylalanine hydroxylase, Biochemistry, vol.24, issue.3, pp.556-561, 1985.
DOI : 10.1021/bi00324a002

H. H. Dahl and J. Mercer, Isolation and sequence of a cDNA clone which contains the complete coding region of rat phenylalanine hydroxylase. Structural homology with tyrosine hydroxylase, glucocorticoid regulation, and use of alternate polyadenylation sites, J. Biol. Chem, vol.261, pp.4148-4153, 1986.

F. D. Ledley, H. E. Grenett, B. S. Dunbar, and S. L. Woo, Mouse phenylalanine hydroxylase. Homology and divergence from human phenylalanine hydroxylase, Biochemical Journal, vol.267, issue.2, pp.399-405, 1990.
DOI : 10.1042/bj2670399

G. Morales, Sequence and expression of the Drosophila phenylalanine hydroxylase mRNA, Gene, vol.93, issue.2, pp.213-219, 1990.
DOI : 10.1016/0378-1119(90)90227-I

M. Wiens, C. Koziol, R. Batel, and W. Muller, Phenylalanine hydroxylase from the sponge Geodia cydonium: implication for allorecognition and evolution of aromatic amino acid HYDROXYLASESfn1fn1Thesequence reported here is deposited in the EMBL\GenBank data base (Accession no. Y16353)., Developmental & Comparative Immunology, vol.22, issue.5-6, pp.469-478, 1998.
DOI : 10.1016/S0145-305X(98)00034-2

C. M. Loer, B. Davidson, and J. Mckerrow, A Phenylalanine Hydroxylase Gene from the Nematode C. Elegans is Expressed in the Hypodermis, Journal of Neurogenetics, vol.22, issue.3, pp.157-180, 1999.
DOI : 10.1042/bj3110353

L. C. Infanger, The role of phenylalanine hydroxylase in melanotic encapsulation of filarial worms in two species of mosquitoes, Insect Biochemistry and Molecular Biology, vol.34, issue.12, pp.1329-1338, 2004.
DOI : 10.1016/j.ibmb.2004.09.004

P. Chen, BmPAH Catalyzes the Initial Melanin Biosynthetic Step in Bombyx mori, PLoS ONE, vol.11, issue.8, p.71984, 2013.
DOI : 10.1371/journal.pone.0071984.s005

C. R. Scriver, ThePAH gene, phenylketonuria, and a paradigm shift, Human Mutation, vol.21, issue.9, pp.831-845, 2007.
DOI : 10.1002/humu.20526

R. A. Williams, C. D. Mamotte, and J. Burnett, Phenylketonuria: an inborn error of phenylalanine metabolism, Clin. Biochem. Rev, vol.29, pp.31-41, 2008.

C. Landvogt, -Dopamine Uptake in Adult Patients Suffering from Phenylketonuria, Journal of Cerebral Blood Flow & Metabolism, vol.155, issue.261, pp.824-831, 2008.
DOI : 10.1038/sj.jcbfm.9600571

E. A. Sawin, S. G. Murali, and D. M. Ney, Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pahenu2 mice, Molecular Genetics and Metabolism, vol.111, issue.4, pp.452-461, 2014.
DOI : 10.1016/j.ymgme.2014.01.015

P. F. Schuck, Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations, Aging and Disease, vol.6, issue.5, pp.390-399, 2015.
DOI : 10.14336/AD.2015.0827

M. Velema, E. Boot, M. Engelen, and C. Hollak, Parkinsonism in phenylketonuria: a consequence of dopamine depletion? JIMD Rep, pp.35-38, 2015.

A. C. Calvo, A. L. Pey, M. Ying, C. M. Loer, and A. Martinez, Anabolic function of phenylalanine hydroxylase in Caenorhabditis elegans, The FASEB Journal, vol.22, issue.8, pp.3046-3058, 2008.
DOI : 10.1096/fj.08-108522

J. W. Truman and L. M. Riddiford, The origins of insect metamorphosis, Nature, vol.401, issue.6752, pp.447-452, 1999.
DOI : 10.1038/46737

J. E. Geltosky and H. K. Mitchell, Developmental regulation of phenylalanine hydroxylase activity in Drosophila melanogaster, Biochemical Genetics, vol.50, issue.7-8, pp.781-791, 1980.
DOI : 10.1007/BF00484593

A. C. Piedrafita, A. C. Martinez-ramirez, and F. J. Silva, A genetic analysis of aromatic amino acid hydroxylases involvement in DOPA synthesis during Drosophila adult development, Insect Biochemistry and Molecular Biology, vol.24, issue.6, pp.581-588, 1994.
DOI : 10.1016/0965-1748(94)90094-9

F. Oduol, J. Xu, O. Niare, R. Natarajan, and K. D. Vernick, Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria, Proc. Natl. Acad. Sci. USA 97, pp.11397-11402, 2000.
DOI : 10.1073/pnas.97.12.6619

J. K. Johnson, A potential role for phenylalanine hydroxylase in mosquito immune responses, Insect Biochemistry and Molecular Biology, vol.33, issue.3, pp.345-354, 2003.
DOI : 10.1016/S0965-1748(02)00257-6

S. Fuchs, V. Behrends, J. G. Bundy, A. Crisanti, and T. Nolan, Phenylalanine Metabolism Regulates Reproduction and Parasite Melanization in the Malaria Mosquito, PLoS ONE, vol.108, issue.1, p.84865, 2014.
DOI : 10.1371/journal.pone.0084865.s001

T. Mito, T. Nakamura, and S. Noji, Evolution of insect development: to the hemimetabolous paradigm, Current Opinion in Genetics & Development, vol.20, issue.4, pp.355-361, 2010.
DOI : 10.1016/j.gde.2010.04.005

A. Rabatel, Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development, BMC Genomics, vol.14, issue.1, p.235, 2013.
DOI : 10.1111/j.1432-1033.1996.00779.x

URL : https://hal.archives-ouvertes.fr/hal-00824527

A. C. Wilson, Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola, Insect Molecular Biology, vol.68, pp.249-258, 2010.
DOI : 10.1111/j.1365-2583.2009.00942.x

URL : https://hal.archives-ouvertes.fr/hal-00539196

T. Miura, A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea), J. Exp. Zool. (Mol. Dev. Evol.), vol.295, pp.59-81, 2003.

F. Legeai, AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome, Insect Molecular Biology, vol.21, issue.1, pp.5-12, 2010.
DOI : 10.1111/j.1365-2583.2009.00930.x

URL : https://hal.archives-ouvertes.fr/inria-00531562

P. Sapountzis, New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments, Insect Biochemistry and Molecular Biology, vol.51, pp.20-32, 2014.
DOI : 10.1016/j.ibmb.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-01002574

C. J. Vavricka, Tyrosine metabolic enzymes from insects and mammals: A comparative perspective, Insect Science, vol.37, issue.1, pp.13-19, 2014.
DOI : 10.1111/1744-7917.12038

T. R. Wright, The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster, Adv. Genet, vol.24, pp.127-222, 1987.

J. True, Insect melanism: the molecules matter, Trends in Ecology & Evolution, vol.18, issue.12, pp.640-647, 2003.
DOI : 10.1016/j.tree.2003.09.006

B. M. Christensen, J. Li, C. C. Chen, and A. J. Nappi, 34321 | DOI: 10.1038/srep34321 43 Melanization immune responses in mosquito vectors, Scientific RepoRts | Trends Parasitol, vol.6, issue.21, pp.192-199, 2005.

S. J. Simpson and P. A. Stevenson, Neuromodulation of Social Behavior in Insects, The Oxford Handbook of Molecular Psychology, pp.27-52, 2014.

E. Zientz, T. Dandekar, and R. Gross, Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts, Microbiology and Molecular Biology Reviews, vol.68, issue.4, pp.745-770, 2004.
DOI : 10.1128/MMBR.68.4.745-770.2004

A. K. Hansen and N. A. Moran, The impact of microbial symbionts on host plant utilization by herbivorous insects, Molecular Ecology, vol.4, issue.Suppl 2, pp.1473-1496, 2014.
DOI : 10.1111/mec.12421

A. K. Hansen and N. A. Moran, Aphid genome expression reveals host-symbiont cooperation in the production of amino acids, Proc. Natl. Acad. Sci. USA, pp.2849-2854, 2011.
DOI : 10.1093/nar/gkn751

S. Shigenobu and A. C. Wilson, Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont, Cellular and Molecular Life Sciences, vol.3, issue.Suppl 2, pp.1297-1309, 2011.
DOI : 10.1007/s00018-011-0645-2

K. E. Vrana, How the regulatory and catalytic domains get together, Nature Structural Biology, vol.6, issue.5, pp.401-402, 1999.
DOI : 10.1038/8192

C. Carluccio, F. Fraternali, F. Salvatore, A. Fornili, and A. Zagari, Structural Features of the Regulatory ACT Domain of Phenylalanine Hydroxylase, PLoS ONE, vol.81, issue.11, p.79482, 2013.
DOI : 10.1371/journal.pone.0079482.s005

A. Marchler-bauer, CDD: NCBI's conserved domain database, Nucleic Acids Research, vol.43, issue.D1, pp.222-226, 2015.
DOI : 10.1093/nar/gku1221

URL : http://doi.org/10.1093/nar/gku1221

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, Molecular Biology and Evolution, vol.27, issue.2, pp.221-224, 2010.
DOI : 10.1093/molbev/msp259

URL : https://hal.archives-ouvertes.fr/lirmm-00705187

S. Guindon, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

P. Simonet, Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis, Scientific Reports, vol.51, issue.1, p.19967, 2016.
DOI : 10.1016/j.ibmb.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-01352561

T. Horn and M. Boutros, E-RNAi: a web application for the multi-species design of RNAi reagents???2010 update, Nucleic Acids Research, vol.38, issue.suppl_2, pp.332-339, 2010.
DOI : 10.1093/nar/gkq317

M. Pfaffl, A. Tichopad, C. Prgomet, and T. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper ??? Excel-based tool using pair-wise correlations, Biotechnology Letters, vol.26, issue.6, pp.509-515, 2004.
DOI : 10.1023/B:BILE.0000019559.84305.47

B. Misof, Phylogenomics resolves the timing and pattern of insect evolution, Science, vol.19, issue.4, pp.763-767, 2014.
DOI : 10.1093/aesa/19.4.440