
HAL Id: hal-01388546
https://inria.hal.science/hal-01388546

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Maximal Chain Subgraphs and Covers of Bipartite
Graphs

Tiziana Calamoneri, Mattia Gastaldello, Arnaud Mary, Marie-France Sagot,
Blerina Sinaimeri

To cite this version:
Tiziana Calamoneri, Mattia Gastaldello, Arnaud Mary, Marie-France Sagot, Blerina Sinaimeri. On
Maximal Chain Subgraphs and Covers of Bipartite Graphs. Combinatorial Algorithms - 27th Interna-
tional Workshop, IWOCA 2016, Aug 2016, Helsinki, Finland. pp.137-150, �10.1007/978-3-319-44543-
4_11�. �hal-01388546�

https://inria.hal.science/hal-01388546
https://hal.archives-ouvertes.fr

On Maximal Chain Subgraphs and Covers of Bipartite
Graphs

Tiziana Calamoneri1, Mattia Gastaldello1,2, Arnaud Mary2, Marie-France Sagot2, and
Blerina Sinaimeri2

1 Sapienza University of Rome
via Salaria 113, 00198 Roma, Italy.

2 INRIA and Université de Lyon
Université Lyon 1, LBBE, CNRS UMR558, France.

Abstract. In this paper, we address three related problems. One is the enumer-
ation of all the maximal not necessarily induced chain subgraphs of a bipartite
graph, for which we provide a polynomial delay algorithm. We give bounds on
the number of maximal chain subgraphs for a bipartite graph and use them to
establish the input-sensitive complexity of the enumeration problem. The second
problem we treat is the one of finding the minimum number of chain subgraphs
needed to cover all the edges a bipartite graph. For this we provide an exact expo-
nential algorithm with a non trivial complexity. Finally, we approach the problem
of enumerating all minimal chain subgraph covers of a bipartite graph and show
that it can be solved in quasi-polynomial time.
Keywords: Chain Subgraph Cover Problem, Enumeration Algorithms, Exact ex-
ponential algorithms.

1 Introduction

Enumerating (listing) the subgraphs of a given graph plays an important role in analysing
its structural properties. It thus is a central issue in many areas, notably in data mining
and computational biology.

In this paper, we address the problem of enumerating without repetitions all maxi-
mal not necessarily induced chain subgraphs of a bipartite graph. These are graphs that
do not contain a 2K2 as induced subgraph. From now on, we will refer to them as chain
subgraphs for short when there is no ambiguity.

Bipartite graphs arise naturally in many applications, such as biology as will be
mentioned later in the introduction, since they enable to model the relations between
two different classes of objects. The problem of enumerating in bipartite graphs all sub-
graphs with certain properties has thus already been considered in the literature. These
concern for instance maximal bicliques for which polynomial delay enumeration algo-
rithms in bipartite [6, 11] as well as in general graphs [5, 11] were provided. In the case
of maximal induced chain subgraphs, their enumeration can be done in output polyno-
mial time as it can be reduced to the enumeration of a particular case of the minimal
hitting set problem [7] (where the sets in the family are of cardinality 4). However, the
existence of a polynomial delay algorithm for this problem remains open. To the best

of our knowledge, nothing is known so far about the problem of enumerating maximal
not necessarily induced chain subgraphs in bipartite graphs.

In this paper, we propose a polynomial delay algorithm to enumerate all maximal
chain subgraphs of a bipartite graph. We also provide an analysis of the time complex-
ity of this algorithm in terms of input size. In order to do this, we prove some upper
bounds on the maximum number of maximal chain subgraphs of a bipartite graph G
with n nodes and m edges. This is also of intrinsic interest as combinatorial bounds on
the maximum number of specific subgraphs in a graph are difficult to obtain and have
received a lot of attention (see for e.g. [8, 12]).

We then address a second related problem called the minimum chain subgraph cover
problem. This asks to determine, for a given graph G, the minimum number of chain
subgraphs that cover all the edges of G. This has already been investigated in the litera-
ture as it is related to other well-known problems such as maximum induced matching
(see e.g. [3, 4]). For bipartite graphs, the problem was shown to be NP-hard [14].

Calling m the number of edges in the graph, we provide an exact exponential al-
gorithm which runs in time O∗((2 + ε)m), for every ε > 0 by combining our results
on the enumeration of maximal chain subgraphs with the inclusion-exclusion technique
[1] (by O∗ we denote standard big O notation but omitting polynomial factors). Notice
that, since a chain subgraph cover is a family of subsets of edges, the existence of an al-
gorithm whose complexity is close to 2m is not obvious. Indeed, the basic search space
would have size 22m

, which corresponds to all families of subsets of edges of a graph
on m edges.

Finally, we approach the problem of enumerating all minimal covers by chain sub-
graphs. To this purpose, we provide a quasi-polynomial time algorithm to enumerate all
minimal covers by maximal chain subgraphs of a bipartite graph. To do so, we prove
that this can be polynomially reduced to the enumeration of the minimal set covers of a
hypergraph.

Besides their theoretical interest, the problems of finding one minimum chain sub-
graph cover and of enumerating all such covers have also a direct application in biology.
Nor et al. [13] showed that a minimum chain subgraph cover of such a bipartite graph
provides a good model for identifying the minimum genetic architecture enabling to
explain one type of manipulation, called cytoplasmic incompatibility, by bacteria of a
genus called Wolbachia of their insect hosts. This phenomenon, results in the death of
embryos produced in crosses between males carrying the infection and uninfected fe-
males. The observed cytoplasmic compatibility relationships, can be then represented
by a bipartite graph with males and females in different classes. Moreover, as different
minimum covers may correspond to solutions that differ in terms of their biological in-
terpretation, the capacity to enumerate all such minimum chain covers becomes crucial.

The remainder of the paper is organised as follows. In Section 2, we give some
definitions and preliminary results that will be used throughout the paper. Section 3
then provides a polynomial delay algorithm to enumerate all maximal chain subgraphs
in a bipartite graph G with n nodes and m edges, and Section 4 presents an upper bound
on their maximum number. We use the latter to further establish the input-sensitive
complexity of the enumeration algorithm. In Section 5, we detail the exact algorithm
for finding a minimum chain cover in bipartite graphs, and in Section 6 we exploit the

connection of this problem with the minimal set cover of a hypergraph to show that it is
possible to enumerate in quasi-polynomial time all minimal covers by maximal chain
subgraphs of a bipartite graph. Finally, we conclude with some open problems.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard graph ter-
minology, as contained for instance in [2]. We consider finite undirected graphs without
loops or multiple edges. For each of the graph problems in this paper, we let n denote
the number of nodes and m the number of edges of the input graph.

Given a bipartite graph G = (U ∪ W, E) and a node u ∈ U, we denote by NG(u)
the set of nodes adjacent to u in G and by EG(u) the set of edges incident to u in G.
Moreover, given U′ ⊆ U and W ′ ⊆ W, we denote by G[U′,W ′] the subgraph of G
induced by U′ ∪W ′. A node u ∈ U such that NG(u) = W is called a universal node.

A bipartite graph is a chain graph if it does not contain a 2K2 as an induced sub-
graph. Equivalently, a bipartite graph is a chain graph if and only if, for each two nodes
v1 and v2 both in U (resp. in W), it holds that either NG(v1) ⊆ NG(v2) or NG(v2) ⊆
NG(v1). Given a chain subgraph C = (X ∪ Y, F) of G, we say that a permutation π
of the nodes of X is a neighbourhood ordering of C if NC(uπ(1)) ⊆ NC(uπ(2)) ⊆ . . . ⊆
NC(uπ(|U |)). A permutation is just an ordered arrangement of a set of nodes. Observe that
if X ⊂ U, the sets NC(uπ(1)), . . . ,NC(uπ(l)) for some integer l ≤ |U |, may be empty. By
the largest neighbourhood of C, we mean the neighbourhood of a node x in X for which
the set NC(x) ⊆ Y has maximum cardinality. A set Y ′ ⊆ Y is a maximal neighborhood
of G, if there exists x ∈ X such that NG(x) = Y ′ and there does not exist a node x′ ∈ X
such that NG(x) ⊂ NG(x′). Two nodes x, x′ such that NC(x) = NC(x′) are called twins.

In this paper, we always consider non induced chain subgraphs of a graph G. Hence,
we identify a chain subgraph C of G by its set of edges E(C) ⊆ E(G) and in that case its
set of nodes will be constituted by all the nodes of G incident to at least one edge in C
(sometimes abusing notation, we more simply write C ⊆ G or e ∈ C). A maximal chain
subgraph C of a given bipartite graph G is a connected chain subgraph such that no
superset of E(C) is a chain subgraph. We denote by C(G) the set of all maximal chain
subgraphs in G.

A set of chain subgraphs C1, . . . ,Ck is a cover for G if ∪1≤i≤kE(Ci) = E(G). Observe
that, given any cover of G by chain subgraphs C = {C1, . . .Ck}, there exists another
cover of same size C′ = {C′1, . . .C

′
k} whose chain subgraphs are all maximal; more

precisely, for each i = 1, . . . , k, C′i is a maximal chain subgraph of G and C′i admits
Ci as subgraph. In order to avoid redundancies, from now on, although not explicitly
highlighted, we will restrict our attention to the covers by maximal chain subgraphs.

We denote by S(G) the set of all minimal chain covers of a bipartite graph G.

An enumeration algorithm is said to be output polynomial or total polynomial if the
total running time is polynomial in the size of the input and the output. It is said to be
polynomial delay if the time between the output of any one solution and the next one is
bounded by a polynomial function of the input size [10].

3 Enumerating All Maximal Chain Subgraphs

In this section, we provide a polynomial delay algorithm for enumerating all the maxi-
mal chain subgraphs of a given bipartite graph. We start by proving the following result.

Proposition 1. Let C = (X∪Y, F) be a chain subgraph of G = (U ∪W, E), with X ⊆ U,
Y ⊆ W and F ⊆ E, and let x ∈ X be a node with largest neighbourhood in C. Then C is
a maximal chain subgraph of G if and only if:

(i) NC(x) = NG(x) is a maximal neighbourhood of G, i.e. there does not exist a node
x′ ∈ X such that NG(x) ⊂ NG(x′).

(ii) C \ EG(x) is a maximal chain subgraph of G
[
U \ {x},NG(x)

]
.

Proof. (⇒) Let C = (X∪Y, F) be a maximal chain subgraph of G = (U∪W, E). To prove
that (i) holds, suppose by contradiction that NC(x) is not a maximal neighbourhood of
G, i.e. there exists x′ ∈ U with NC(x) ⊂ NG(x′) (possibly x′ = x). Since NC(x) is the
largest neighbourhood of C, for all z ∈ X, we have NC(z) ⊆ NC(x) ⊂ NG(x′), so we
can then add to C all the edges incident to x′ and still obtain a chain subgraph thereby
contradicting the maximality of C. To prove that (ii) holds, first observe that NG(x) = Y
(otherwise we would violate (i) with x′ = x). By contradiction, assume that C \ EG(x)
is not maximal in G

[
U \ {x},NG(x)

]
. Then, there exists a chain subgraph C′ such that

C \ EG(x) ⊂ C′ ⊆ G
[
U \ {x},NG(x)

]
. By adding to each one of the previous graphs the

edges in EG(x), we have that the strict inclusion is preserved because the added edges
were not present in any one of the three graphs. Since C′ with the addition of EG(x) is
still a chain subgraph with NG(x) as its largest neighbourhood, we reach a contradiction
with the hypothesis that C is maximal in G.

(⇐) We show that if both (i) and (ii) hold, then the chain subgraph C of G is maxi-
mal. Suppose by contradiction that C is not maximal in G, and let C′ be a chain subgraph
of G such that C ⊂ C′. Let x be the node with the largest neighbourhood in C. It follows
that NC(x) ⊆ NC′ (x). As (i) holds, we have that NG(x) = NC(x) ⊆ NC′ (x) ⊆ NG(x)
from which we derive that NC′ (x) = NG(x), and that C′ ⊆ G

[
U,NG(x)

]
since NC′ (x) is

a maximal neighbourhood of G, hence the largest neighbourhood of C′ (and C by the
hypothesis). This implies also that C and C′ differ in some node different from x, i.e.
C \ EG(x) ⊂ C′ \ EG(x) ⊆ G

[
U \ {x},NG(x)

]
. Notice that C′ \ EG(x) is still a chain

subgraph because we simply removed node x and all its incident edges. We then get a
contradiction with (ii). ut

Proposition 1 leads us to the design of Algorithm 1 which efficiently enumerates all
maximal chain subgraphs of G. It exploits the fact that, in each maximal chain subgraph,
a node u whose neighbourhood is largest is also maximal in G (part (i) of Proposition
1) and this holds recursively in the chain subgraph obtained by removing node u and
restricting the graph to NC(u) (part (ii) of Proposition 1). To compute the maximal
neighbourhood nodes, the algorithm uses a function, computeCandidates, that, given
sets U and W, returns for each maximal neighbourhood Y ⊂ W, a unique node u, called
candidate, for which NG(u) = Y . This means that in case of twin nodes, the function
computeCandidates extracts only one representative node according to some fixed
order on the nodes (e.g. the node with the smallest label according to the lexicographical
order). If the graph has no edges, the function returns the empty set.

Proposition 2 (Correctness). Algorithm 1 correctly enumerates all the maximal chain
subgraphs of the input graph G without repetitions.

Proof. Let G = (U ∪W, E) be a bipartite graph. We prove the correctness of Algorithm
1 by induction on |U |, i.e. we show that all the solutions are output, without repetitions.

When |U | = 1, let u be the only node in U. We have that NG(u) is the only neigh-
bourhood in W, and line 3 returns {u} as unique candidate. In line 9, the algorithm
reduces the graph of interest. In line 10, the whole EG(u) is added to the current chain
subgraph C. Then the function is recursively recalled, with U′ = ∅ so the condition at
line 4 is true and C is printed; it is in fact the only chain subgraph of G, and it is trivially
maximal. No repetitions hold. Correctness then follows when |U | = 1.

Assume now that |U | = k with k > 1. As inductive hypothesis, let the algorithm
work correctly when |U | = k − 1.

For each candidate u, the algorithm recursively recalls the same function on a re-
duced graph and, by the inductive hypothesis, outputs all chain subgraphs of this re-
duced subgraph without repetitions. By Proposition 1, if we add to each one of these
chain subgraphs the node u and all the edges incident to u in G[U,W], we get a different
maximal chain subgraph of G since each maximal chain subgraph has one and only one
maximal neighborhood and the function computeCandidates returns only one repre-
sentative node. Recall that in the case of twin nodes the algorithm will always consider
the nodes in a precise order and so no repetition occurs. Moreover, iterating this process
for all candidates guarantees that all maximal chain subgraphs are enumerated and no
one is missed. ut

Algorithm 1: Enumerate All Maximal Chain Subgraphs
Input: A bipartite graph G = (U ∪W, E)
Output: All maximal chain subgraphs of G

1 C ←− ∅ ; /* C is the set of edges of the current chain subgraph */

2 enumerateMaximalChain(U,W,C)
3 Candidates←− computeCandidates(U,W)

4 if Candidates == ∅ then
5 print(C);
6 return;
7 end
8 for u ∈ Candidates do
9 U′ ←− U \ {u}; W ′ ←− W ∩ NG(u); /* reduced graph */

10 F(u)←− {edges of EG(u) incident to some node in W ′}

11 enumerateMaximalChain(U′,W ′,C ∪ F(u));
12 end

Let G = (U ∪ W, E) be a bipartite graph, with n = |U | + |W | and m = |E|. Before
proving the time complexity of Algorithm 1, we observe that the running time of the
function ComputeCandidates is O(nm). Indeed, if we assume that the adjacency lists
of the graph are ordered, for each node ui ∈ U, it requires only time proportional to
i · deg(ui) ≤ n · deg(ui) to check whether the neighbourhood of ui either is included, or
includes the neighbourhood of u j, for each j < i.

Proposition 3 (Time Complexity and Polynomial Delay). Let G = (U ∪ W, E) be a
bipartite graph. The total running time of Algorithm 1 is O(|C(G)|n2m). Moreover, the
solutions are enumerated in polynomial time delay O(n2m).

Proof. Represent the computation of Algorithm 1 as a tree of the recursion calls of
enumerateMaximalChain, each node of which stores the current graph on which the
recursion is called at line 11. Of course, the root stores G and on each leaf the condition
Candidates = ∅ is true and a new solution is output. Observe that each leaf contains a
feasible solution, and that no repetitions occur in view of Proposition 2, so the number
of leaves is exactly |C(G)|.

Since at each call the size of U is reduced by one, the tree height is necessarily
bounded by |U | = O(n); moreover, on each tree node, O(nm) time is spent for running
function ComputeCandidates.

It follows that, since the algorithm explores the tree in DFS fashion starting from
the root, between two solutions the running time is at most O(n2m) and the total running
time is O(|C(G)|n2m). ut

4 Upper bounds on the number of Maximal Chain Subgraphs

In this section, we give two upper bounds on the maximum number of maximal chain
subgraphs of a bipartite graph G with n nodes and m edges. The first bound is given in
terms of n while the second depends on m. These bounds are of independent interest,
however we will use them in two directions. First, they will allow us to determine the
(input-sensitive) complexity of Algorithm 1. Indeed, in Proposition 3, we proved that
the total running time of Algorithm 1 is of the form O(D(n) × |C(G)|), where D(n) is
the delay of the algorithm and |C(G)| is the number of maximal chain subgraphs of G.
Thus, a bound on |C(G)| leads to a bound on the running time of Algorithm 1 depending
on the size of the input. Second, the bound on |C(G)| in terms of edges allows us to
compute the time complexity of an exact exponential algorithm for the minimum chain
subgraph cover problem in Section 5.

4.1 Bound in terms of nodes

The following lemma claims that a given permutation is the neighbourhood ordering of
at most one maximal chain subgraph.

Lemma 1. Let C1 and C2 be two maximal chain subgraphs of G = (U ∪W, E) and let
π1 (resp. π2) be a neighbourhood ordering of C1 (resp. C2). Then, π1 = π2 =⇒ C1 = C2.

Proof. The proof proceeds by induction on the number of nodes of U.
If |U | = 1 then G has only one maximal chain subgraph and the result trivially holds.
Assume now that |U | > 1. By Proposition 1, we have that NC1 (uπ(|U |)) = NG(uπ(|U |)) =

NC2 (uπ(|U |)). Using again Proposition 1, we obtain that C′1 := C1[U \ {uπ(|U |)},NG(uπ(|U |))]
and C′2 := C2[U \{uπ(|U |)},NG(uπ(|U |))] are maximal chain subgraphs of the graph defined
as G[U \ {uπ(|U |)},NG(uπ(|U |))]. Applying the inductive hypothesis with the permutations
restricted to the |U | − 1 elements, we have that C′1 = C′2. Finally, since NC1 (uπ(|U |)) =

NC2 (uπ(|U |)), we conclude that C1 = C2. ut

As a corollary, the maximum number of chain subgraphs of a graph G = (U ∪W, E)
is bounded by |U |!. Since the same reasoning can be applied on W, we have that |C(G)| ≤
|W |! and hence:

|C(G)| ≤ min(|U |, |W |)! ≤
n
2

!

This bound is tight as shown by the following family of graphs that reaches it.
Consider the antimatching graph with n nodes An = (U ∪ W, E) defined as the

complement of an n/2 edge perfect matching, i.e.:

U := {u1, . . . , un/2}, W := {w1, . . . ,wn/2},

E := {(ui,w j) ∈ U ×W : i , j}

It is not difficult to convince oneself that the maximal chain subgraphs of An are ex-
actly (n/2)! and that a different permutation corresponds to each of them. In particular,
for each permutation π of the nodes of U, the corresponding maximal chain subgraph
Cπ of An can be defined by means of the set of neighbourhoods as follows:

NCπ
(ui) := {wk s.t. π−1(k) < π−1(i)}.

The so-defined graph Cπ is a chain subgraph since all the neighbourhoods form a chain
of inclusions. Moreover, it is maximal since if we added to the neighbourhood of ui any
one of the missing edges (ui,w j) with π−1(j) ≥ π−1(i), we would introduce a 2K2 with
the existing edge (u j,wi) as (u j,w j) and (ui,wi) are not in E.

4.2 Bound in terms of edges

Let T (m) be the maximum number of maximal chain subgraphs over all bipartite graphs
with m edges. We prove that T (m) ≤ 2

√
m log(m).

Lemma 2. Let G = (U ∪W, E) be a bipartite graph. Then |C(G)| ≤ |U | · T (m − |W |).

Proof. In view of how the algorithm works and of Proposition 1, at the beginning, there
at most |U | candidates. For each candidate x, we can build as many chain subgraphs
as there are in G[U \ {x},NG(x)]. We claim that this latter graph has at most m − |W |
edges. Indeed, in order to construct G[U\{x},NG(x)], we remove from G exactly |EG(x)|
edges when deleting x from U, and |W |− |NG(x)| nodes (each one connected to at least a
different edge as G is connected) when reducing W to NG(x). Observing that |EG(x)| =
|NG(x)|, in total we remove |W | edges. The proof follows from the fact that the number
of chain subgraphs of G[U \ {x},NG(x)] is bounded by T (m − |W |). ut

Theorem 1. Let G = (U ∪W, E) be a bipartite graph with n nodes and m edges; then
|C(G)| ≤ 2

√
m log m, i.e. T (m) ≤ 2

√
m log m.

Proof. Assume w.l.o.g that |U | ≤ |W |. The proof is by induction on m. Note that for
m = 1 the theorem holds trivially.

Applying the inductive hypothesis and Lemma 2, we have:

|C(G)| ≤ |U |T (m − |W |) ≤
n
2

2
(√

m− 1
2 n log(m− 1

2 n)
)
.

Since the function
F : [

√
m,m − 1]→ R

x 7→ x2
√

m−x log(m−x) is decreasing (see Lemma 5

in Appendix), the maximum of n
2 2
√

m− n
2 log(m− n

2) is reached when n/2 is minimum. Note
that trivially for a bipartite graph we have n/2 >

√
m. Hence,

|C(G)| ≤
√

m 2
√

m−
√

m log(m−
√

m)

Let A :=
√

m −
√

m −
√

m and B := m−
√

m
m . We then have:

|C(G)| ≤
√

m 2(
√

m−A) log(mB)

= 2
√

m log m ×
√

m 2log B(
√

m−A)−A log(m)

Let us show that Z :=
√

m 2log B(
√

m−A)−A log m ≤ 1 by showing that log Z ≤ 0:

log Z = log
√

m + log B(
√

m − A) − A log(m)
= log

√
m(1 − 2A) + log B(

√
m − A)

≤ 0

considering that B < 1 and 1/2 < A ≤ 1 since:

A =
1

1 +
√

B
=

1

1 +
√

1 − 1
√

m

ut

Corollary 1. The (input-sensitive) complexity of Algorithm 1 is bounded by O∗(2
√

mlog(m)).

5 Minimum Chain Subgraph Cover

In this section, we show how to find in polynomial space a minimum chain subgraph
cover in time O∗((2 + ε)m), for every ε > 0. Since a chain subgraph cover is a family
of subsets of edges, the existence of an algorithm whose complexity is close to 2m is
not obvious. Indeed the basic search space has size 22m

, as it corresponds to a family of
subsets of edges. To obtain this result, we exploit Algorithm 1, the bound obtained in
Theorem 1 and the inclusion/exclusion method [1, 8] that has already been successfully
applied to exact exponential algorithms for many partitioning and covering problems.

We first express the problem as an inclusion-exclusion formula over the subsets of
edges of G.

Proposition 4. [1] Let ck(G) be the number of chain subgraph covers of size k of a
graph G. We have that:

ck(G) =
∑
A⊆E

(−1)|A|a(A)k

where a(A) denotes the number of maximal chain subgraphs not intersecting A.

Exploring this result brings to the exact algorithm as described in the proof of the
next theorem.

Theorem 2. Given a bipartite graph G with m edges, for all k ∈ N∗ and for all ε > 0,
ck(G) can be computed in time O∗((2 + ε)m).

Proof. Let G = (U ∪W, E) be a bipartite graph, k ∈ N∗ and ε > 0. Using the formula of

Proposition 4, ck can be computed in time
m∑

i=0

(
m
i

)
C(i), where C(i) is the time complexity

needed to compute a(A), |A| = i.
Notice that to compute a(A) for a given A ⊆ E, one can naively compute all max-

imal chain subgraphs of G′ = (U ∪ W, E \ A) and, for each of them, check whether
it is maximal in G. Using this fact, and Corollary 1, C(i) can be determined in time
O(n2m2

√
m−i log(m−i)).

Thus we have that ck(G) can be computed in time
m∑

i=0

(
m
i

)
n2m2

√
m−i log(m−i). Observe

now that since 2
√

m−i log(m−i) = o((1 + ε)m), there exists a constant nε such that for all
m > nε, 2

√
m−i log(m−i) < (1 + ε)m.

Recalling that G is connected and thus m ≥ n, we then have:

m∑
i=0

(
m
i

)
n2m2

√
m−i log(m−i) =n2m

(m−nε−1∑
i=0

(
m
i

)
2
√

m−i log(m−i) +

m∑
i=m−nε

(
m
i

)
2
√

m−i log(m−i)
)

≤ n2m
(m−nε−1∑

i=0

(
m
i

)
(1 + ε)m−i + nεmnε2

√
nε log(nε)

)

≤ n2m
(m∑

i=0

(
m
i

)
(1 + ε)m−i + nεmnε2

√
nε log(nε)

)
≤ n2m(2 + ε)m + n2nεm1+nε2

√
nε log(nε)

= O∗((2 + ε)m).

We conclude, by observing that the size of a minimum chain cover is given by the
smallest value of k for which ck(G) , 0. ut

6 Enumeration of Minimal Chain Subgraph Covers

In this section, we prove that the enumeration of all minimal chain subgraph covers can
be polynomially reduced to the enumeration of the minimal set covers of a hypergraph.
This reduction implies that there is a quasi-polynomial time algorithm to enumerate all
minimal chain subgraph covers. Indeed, the result in [9] implies that all the minimal
set covers of a hypergraph can be enumerated in time N log N where N is the sum of the
input size (i.e. n + m) and of the output size (i.e. the number of minimal set covers).

Let G = (U ∪W, E) be a bipartite graph, C = C(G) the set of all its maximal chain
subgraphs, and S = S(G) the set of its minimal chain subgraph covers. Notice that
the minimal chain subgraph covers of G are the minimal set covers of the hypergraph
H := (V,E) where V = E and E = C. Unfortunately, the size ofH might be exponential
in the size of G plus the size of S. Indeed not every maximal chain subgraph in C will
necessarily be part of some minimal chain subgraph cover. In order to obtain a quasi-
polynomial time algorithm to enumerate all minimal chain subgraph covers, we need to

enumerate only those maximal chain subgraphs that belong to a minimal chain subgraph
cover.

Given an edge e ∈ E, let Ce be the set of all maximal chain subgraphs of G contain-
ing e andMe the set of all edges e′ ∈ E inducing a 2K2 in G together with e.

We call an edge e ∈ E non-essential if there exists another edge e′ ∈ E such that
Ce′ ⊂ Ce. An edge which is not non-essential is said to be essential. Note that for every
non-essential edge e, there exists an essential edge e1 such that Ce1 ⊂ Ce. Indeed, by
applying iteratively the definition of a non-essential edge, we obtain a list of inclusions
Ce ⊃ Ce1 ⊃ Ce2 . . ., where no Cei is repeated as the inclusions are strict. The last element
of the list will correspond to an essential edge.

The following lemma claims that if a maximal chain subgraph C contains at least
one essential edge, then it belongs to at least one minimal chain subgraph cover.

Lemma 3. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪ W, E).
Then C belongs to a minimal chain subgraph cover of G if and only if C contains an
essential edge.

Proof. (⇒) Let C belong to a minimal chain subgraph cover M and assume that C
contains no essential edge. Given e ∈ C, e therefore being non-essential, there exists an
essential edge e′ such that Ce′ ⊂ Ce. Moreover, e′ < C. As M is a cover, there exists
C′ ∈ M such that e′ ∈ C′. Thus, C′ , C, C′ ∈ Ce′ ⊂ Ce, hence e ∈ C′. Since for
every edge e ∈ C, there exists C′ ∈ M containing it, we have that M \ {C} is a cover,
contradicting the minimality of M.

(⇐) Assume C contains an essential edge e. Let C′ = {D ∈ C(G) : e < D}. Note
that C′ = C \ Ce. We show that C′ ∪ {C} is a cover. Suppose on the contrary that there
exists e′ ∈ E \ E(C) and e′ is not covered by C′ and thus Ce′ ∩C

′ = ∅. This implies that
Ce′ ⊆ C \ C

′ = Ce and as e is essential, we obtain Ce′ = Ce from which we deduce that
e′ ∈ C. Thus, M = C′ ∪ {C} is a cover and clearly it contains a minimal one. Finally,
we conclude by observing that, since by construction C is the only chain subgraph of
M that contains e, it belongs to any minimal cover contained in M. ut

It follows that the set of maximal chain subgraphs that can contribute to a minimal
chain cover is C̃ = ∪Ce where the index e of the union operation runs over all the essen-
tial edges of G. In the following, we show how to detect essential edges. This problem
then consists in detecting all the couples e1, e2 such that Ce1 ⊆ Ce2 before enumerating
all useful maximal chain subgraphs. The next lemma is proved in Appendix.

Lemma 4. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪ W, E)
and let e ∈ E be such that for all e′ ∈ E(C), it holds that e <Me′ . Then e ∈ C.

Using this lemma we can now prove the following result.

Theorem 3. Given a bipartite graph G = (U ∪ W, E), for any two edges e, e′ ∈ E,
Ce ⊆ Ce′ if and only ifMe ⊇ Me′ .

Proof. (⇒) Given two edges e, e′ ∈ E, suppose that Ce ⊆ Ce′ , and assume on the
contrary that there exists f ∈ Me′ and f < Me. Then there exists a maximal chain

C′ containing e and f (as they do not form a 2K2 in G) but not e′ (f ∈ Me′). Hence,
C′ ∈ Ce but C′ < Ce′ , contradicting the assumption that Ce ⊆ Ce′ .

(⇐) Suppose nowMe ⊇ Me′ . Let C ∈ Ce. By definition, none of the edges ofMe

appears in C. Hence, e′ does not form a 2K2 with any edge in C in the graph G (as
Me ⊇ Me′). By Lemma 4 e′ ∈ C. Thus, Ce ⊆ Ce′ . ut

Notice that, given an edge e = (u,w) ∈ E, u ∈ U and w ∈ W, it is easy to determine
the setMe. We just need to start from E and delete all edges that are incident either to
u or to w, as well as all edges at distance 2 from e (that is all edges e′ = (u′,w′) such
that either u′ is adjacent to w or w′ is adjacent to u). Checking whetherMe ⊇ Me′ is
also easy: it suffices to sort the edges in each set in lexicographic order, and then the
inclusion of each pair can be checked in linear time in their size, that is in O(m). It is
thus possible to enumerate in polynomial delay only those maximal chain subgraphs
that contain at least one essential edge by modifying Algorithm 1. Due to space limits,
we do not detail the algorithm here and refer instead the reader to Algorithm 2 in the
Appendix. Finally, we are now able to state the main result of this section.

Theorem 4. Given a bipartite graph G = (U∪W, E), one can enumerate all its minimal
chain subgraph covers, i.e. all the elements in S, in time O(|S|log(|S|)+2).

Proof. We first construct the hypergraphH = (V,E) where V := E′ is the set of essen-
tial edges of G and E := Cess is the set of maximal chain subgraphs of G that contain
at least one essential edge. This takes time O(n2m|Cess|). Applying then the algorithm
given in [9], one can enumerate all minimal set covers of H (i.e. all minimal chain
subgraph covers) in time O((|H| + |S|)log(|H|+|S|)) = O((|Cess| + |S|)log(|Cess |+|S|)). The total
running time is thus O(n2m|Cess| + (|Cess| + |S|)log(|Cess |+|S|)). Notice now that since by
Lemma 3, every maximal chain subgraph in Cess belongs to at least one minimal chain
subgraph cover, we have that |Cess| ≤ |S|. Finally, we obtain that the total running time
is O(n2m|S| + (|S| + |S|)log(|S|+|S|)) = O(|S|log(|S|)+2).

7 Conclusion

In this paper, we studied different problems related to maximal chain subgraphs and
chain subgraph covers in bipartite graphs. This work raises many questions. First, it
remains an open problem whether it is possible to enumerate the minimal chain cov-
ers of a graph in polynomial delay. Indeed, our problem is more constrained than an
arbitrary instance of the set cover of a hypergraph. A future goal is to better exploit
the connections between these two problems. Second, it would be interesting to de-
termine the exact value of T (m). We conjecture that a tighter bound may be 2

1+
√

1+4m
2 .

Finally, it is worth exploring the different nature of the problems considered here in the
case where we deal with an hereditary property (induced chain subgraphs) instead of a
non-hereditary one (non necessarily induced chain subgraphs). In particular, it remains
unknown whether enumerating maximal induced subgraphs can be done in polynomial
delay.

Acknowledgments

T. Calamoneri is supported in part by the Italian Ministry of Education, University,
and Research (MIUR) under PRIN 2012C4E3KT national research project “AMANDA
- Algorithmics for MAssive and Networked DAta” and in part by Sapienza Univer-
sity of Rome project “Graph Algorithms for Phylogenetics: A Promising Approach”.
M. Gastaldello is supported by the Università Italo-Francese project “Algorithms and
Models for the solution of difficult problems in biology”. A. Mary is supported by the
ANR project GraphEN “Enumération dans les graphes et les hypergraphes: algorithmes
et complexité”, ANR-15-CE40-0009.

References

1. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, July 2009.

2. Béla Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 1998.

3. A. Brandstädt, E. M Eschen, and R. Sritharan. The induced matching and chain subgraph
cover problems for convex bipartite graphs. Theoretical computer science, 381(1):260–265,
2007.

4. Yu Chang-Wu, Chen Gen-Huey, and Ma Tze-Heng. On the complexity of the k-chain sub-
graph cover problem. Theoretical computer science, 205(1):85–98, 1998.

5. Vânia M.F. Dias, Celina M.H. de Figueiredo, and Jayme L. Szwarcfiter. Generating bicliques
of a graph in lexicographic order. Theoretical Computer Science, 337(1-3):240 – 248, 2005.

6. Vânia M.F. Dias, Celina M.H. de Figueiredo, and Jayme L. Szwarcfiter. On the generation
of bicliques of a graph. Discrete Applied Mathematics, 155(14):1826 – 1832, 2007.

7. Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

8. Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer-Verlag New
York, Inc., New York, NY, USA, 2010.

9. M. L Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive
normal forms. Journal of Algorithms, 21(3):618–628, 1996.

10. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal inde-
pendent sets. Information Processing Letters, 27(3):119–123, 1988.

11. Kazuhisa Makino and Takeaki Uno. SWAT 2004, Lecture Notes in Computer Science, chapter
New Algorithms for Enumerating All Maximal Cliques, pages 260–272. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

12. J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3(1):23–28,
1965.

13. I. Nor, J. Engelstädter, O. Duron, M. Reuter, M-F. Sagot, and S. Charlat. On the genetic
architecture of cytoplasmic incompatibility: inference from phenotypic data. The American
Naturalist, 182(1):E15–E24, 2013.

14. Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM Journal
on Algebraic Discrete Methods, 3(3):351–358, 1982.

Appendix

Upper bounds on the number of Maximal Chain Subgraphs

We provide here the proof of the following result that was used in the proof of Theo-
rem 1.

Lemma 5. The function:
F : [

√
m,m − 1]→ R

x 7→ x2
√

m−x log(m−x)

is decreasing.

Proof. The derivative of F(x) is given by:

− x
(

log (m − x)
2
√

m − x
+

1
√

m − x

)
2(√m−x log(m−x)) + 2(√m−x log(m−x))

= −

(
x log (m − x) + 2x − 2

√
m − x

)
2(√m−x log(m−x))

2
√

m − x

Then the derivative is negative whenever
(
x log (m − x) + 2x − 2

√
m − x

)
≥ 0.

Observe that log (m − x) ≥ 0 for x ≤ m − 1, while for x ≥ 0 we have:

2x − 2
√

m − x ≥ 0⇐⇒ x ≥
−1 +

√
1 + 4m

2
= −

1
2

+

√
m +

1
4

and:
√

m ≥ −
1
2

+

√
m +

1
4

ut

Enumeration of Minimal Chain Subgraph Covers

We prove here Lemma 4. We start by showing the following fact.

Fact 1 Let C = (X ∪ Y, F) be a maximal chain subgraph of a bipartite graph G =

(U ∪ W, E), and let z ∈ X, e = {u,w} ∈ E be such that for every e′ ∈ EC(z), we have
e <Me′ . Then at least one of the following holds:

(1) w ∈ NG(z).
(2) u ∈ ∩y∈NC (z)NG(y).

Proof. The proof follows straightforwardly by observing that for any e′ = {z, y} ∈ C
then as e <Me′ , either {z,w} ∈ E(G) or {u, y} ∈ E(G). ut

Lemma 4. Let C be a maximal chain subgraph of a bipartite graph G = (U ∪ W, E)
and let e ∈ E be such that for all e′ ∈ E(C), it holds that e <Me′ . Then e ∈ C.

Proof. Let C = (X∪Y, F) be a maximal chain subgraph of G = (U ∪W, E) and w.l.o.g.,
let NC(u1) ⊆ NC(u2) ⊆ . . . ⊆ NC(u|X|). Let e = {u,w} in E be such that for all e′ ∈ E(C),
it holds that e <Me′ . Assume that e < C.

We will show that w ∈ ∩x∈XNG(x) leads to a contradiction because we could add
all the edges EG(w) to C and still obtain a chain subgraph (with NG(w) as the largest
neighbourhood of C).

Observe that in the previous claim, we can re-write (2) in the form NC(z) ⊆ NG(u).

Using the previous fact with z = u|X|, we have that at least one from (1) and (2)
must hold. Observe that (2) cannot hold as otherwise it implies that u ∈ ∩y∈NC (z)NG(y).
We are then done by interchanging the roles of Y and X and observing by point (i) of
Proposition 1 that NC(u|X|) = NG(u|X|) = Y . Thus, (1) must hold, i.e. w ∈ NG(u|X|).

If we now show that w ∈ ∩|X|k= jNG(uk) ⇒ w ∈ NG(u j−1), we are done since together
with w ∈ NG(u|X|) this leads to:

w ∈
|X|⋂

k=1

NG(uk) =
⋂
x∈X

NG(x)

To prove this, we apply again Fact 1 with z = u j−1 and show that (2) cannot hold.
Notice that from (2), we have NC(u j−1) ⊆ NG(u). Then using the maximality of C, we
deduce that u ∈ X. Indeed, NC(u) has to contain at least NC(u j−1), and hence there exists
k̃ ≥ j − 1 for which u = uk̃. Then we could extend C to C′ by adding e. Observe that C′

has the following list of neighbourhoods:

NC′ (uk) := NC(uk) for k , k̃

NC′ (uk) := NC(uk) ∪ {w} for k = k̃

and is a chain subgraph since NC(uk̃) ∪ {w} ⊆ NC(uk) for all k > k̃ ≥ j − 1 by w ∈
∩
|X|
k= jNG(uk) and the maximality of C.

Description of Algorithm 2.

Algorithm 2: Enumerate All Maximal Chain Subgraphs with not an empty inter-
section with a given set of edges E′

Input: A bipartite graph G = (U ∪W, E), a set of edges E′ := {u1w1, ..., ukwk}

Output: All maximal chain subgraphs of G that intersect E′

1 C ←− ∅

2 enumerateMaximalChain(U,W,C)
3 Candidates←− computeCandidates(U,W)

4 if Candidates == ∅ then
5 print(C);
6 return;
7 end
8 if {u1, ..., uk} ⊆ U then
9 Candidates←− Candidates \ {u ∈ U : NG(u) ∩ {w1, ...,wk} = ∅}

10 end
11 for u ∈ Candidates do
12 U′ ←− U \ {u}; W ′ ←− W ∩ NG(u); /* reduced graph */

13 F(u)←− { edges of EG(u) incident to some node in W ′}
14 enumerateMaximalChain(U′,W ′,C ∪ F(u));
15 end

