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Geometry-Aware Neighborhood Search for Learning
Local Models for Image Super-Resolution

Julio Cesar Ferreira, Elif Vural, and Christine Guillemot

Abstract—Local learning of sparse image models has proven analysis (PCA) basis is learned in each cluster. The idea of
to be very effective to solve inverse problems in many computer |earning adaptive models from groups of similar patches for

vision applications. To learn such models, the data samples j5qe restoration has been exploited in several recent works
are often clustered using the K-means algorithm with the Eu- [11], [12], [13]

clidean distance as a dissimilarity metric. However, the Euclidean ! o
distance may not always be a good dissimilarity measure for ~When learning local models, the assessment of the similarity

comparing data samples lying on a manifold. In this paper, we between image patches is of essential importance. Different
propose two algorithms for determining a local subset of training  similarity measures lead to different partitionings of data,
fggﬁgfug?:; V;héci\r)eg ?nopou‘i lt(ég?l Sr;‘r?]‘;leé C\f‘v?]e?g \(/:voemgukteEdinft(c))r which may eventually change the learned models signi cantly.
account the underlying geometry of the data. The rst algo- Many algorithms ponstruptlng local models assess similarity
rithm, called Adaptive Geometry-driven Nearest Neighbor search based on the Euclidean distance between samples. For example
AGNN), is an adaptive scheme which can be seen as an out-of-in [1] and [2] image patches are clustered using the K-means
gep g
sample extension of the replicator graph clustering method for algorithm, where patches having a small Euclidean distance
local model learning. The second method, called Geometry-driven are grouped together to learn a PCA basis. Test patches are

Overlapping Clusters (GOC), is a less complex nonadaptive .
alternative for training subset selection. The proposed AGNN and then reconstructed under the assumption that they are sparsely

GOC methods are evaluated in image super-resolution and shown representable in this basis. _ _
to outperform spectral clustering, soft clustering, and geodesic =~ However, patches sampled from natural images are highly

distance based subset selection in most settings. structured and constitute a low-dimensional subset of the high-
Index Terms—Clustering, patch manifolds, nearest neighbor dimensional ambient space. In fact, natur_al Image patche_s are
search, image super-resolution, image restoration. commonly assumed to lie close to a low-dimensional manifold

[14], [15]. Similarly, in the deconvolution method proposed
in [10], image patches are assumed to lie on a large patch
manifold, which is decomposed into a collection of locally
HE super-resolution problem can be formulated as a lifinear models learned by clustering and computing local PCA
ear inverse problem by modeling the image deformatidrases. The geometric structure of a patch manifold depends
via a linear system. This problem is generally ill-posed angery much on the characteristics of the patches constituting
the solutions often rely on some a priori information abolt, the manifold is quite nonlinear especially in regions where
the image to be reconstructed. Research in the recent ygaaches have a rich texture. When evaluating the similarity
has proven that adopting an appropriate sparse image mdusiveen patches on a patch manifold, care should be taken
can yield quite satisfactory reconstruction qualities. Sparsspecially in high-curvature regions, where Euclidean distance
representations are now used to solve inverse problemsldees its reliability as a dissimilarity measure. In other words,
many computer vision applications, such as super-resolutionthe K-means based setting of [1] and [2], one may obtain a
[1], [2], [3], [4]; denoising [1], [5], [6]; compressive sensinggood performance only if the local PCA basis agrees with the
[7], [8], [9]; and deblurring [1], [2]. While several works local geometry of the patch manifold, i.e., the most signi cant
assume that the image to be reconstructed has a spamsecipal directions should correspond to the tangent directions
representation in a large overcomplete dictionary [4], [5], it has the patch manifold so that data can be well approximated
also been observed that representing the data with small, los#th a sparse linear combination of only a few basis vec-
models (such as subspaces) might have bene ts over a singles. While this easily holds in low-curvature regions of the
and global model since local models may be more adaptirenifold where the manifold is at, in high-curvature regions,
and capture better the local variations in data characteristtbe subspace spanned by the most signi cant principal vectors
[1], [2], [10]. The image restoration methods in [1] and [2Eomputed from the nearest Euclidean-distance neighbors of
propose a patch-based processing of images, where the traimingference point may diverge signi cantly from the tangent
patches are rst clustered and then a principal componespace of the manifold if the neighborhood size is not selected
properly [16], [17]. This is illustrated in Figure 1, where the
J. C. Ferreira is with the Goiano Federal Institute of Education, Science apdt few signi cant principal directions fail to approximate
Technology, Urutai, 35790-000 Brazil. e-mail: julio.ferreira@ifgoiano.edu.b . .
E. Vural is with Middle East Technical University, Ankara, 06800 Turkey.he tangent space because the manifold bends over itself as
e-mail: velif@metu.edu.tr in Figure 1(b), or because the curvature principal components
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The method computes a collection of training subsets in a
prior learning phase in the form of overlapping clusters. The
overlapping clusters are formed by rst initializing the cluster

centers and then expanding each cluster around its central

@ sample by following th&K -nearest neighborhood connections
on the data graph. What really determines the performance
@ () © of the GOC method is the structure of the clusters, driven by

the number of neighborl€ and the amount of expansion. We
Fig. 1: PCA basis vectors computed with data sampled from a neighborhood Oﬂjmpose a geometry-based strategy to set these parameters, by
manifold. In (a), the two most signi cant principal directions correspond to tangent . .
directions and PCA computes a local model coherent with the manifold geometry. $tUDYINg the rate of decay of PCA coef cients of data samples
(b), PCA fails to recover the tangent space as the manifold bends over itself and jhethe cIuster, thereby Characterizing how close the cluster lies
neighborhood size is not selected properly. In (c), as the curvature component is stronger . .
than the tangential components, the subspace spanned by the two most signi cant Ft%Aa low-dimensional subspace.

basis vectors again fails to approximate the tangent space. Note that, while the proposed AGNN and GOC algorithms
employ similar ideas to those in manifold clustering methods,

. ] our study differs from manifold clustering as we do not aim
inverse problem and consider approaches based on spgsgniain a partitioning of data. Instead, given a test sample to

representations of images in locally learmned subspaces. Wereconstructed, we focus on the selection of a local subset
present geometry-driven strategies to select subsets of d§graining data to learn a good local model. We evaluate
samples for learning local models. Given a test sample, W& performance of our methods in image super-resolution
address the problem of determining a local subset of thgpication. The results show that the proposed similarity
training samples, i.e., a neighborhood of the test sample, frofisessment strategies can provide performance gains compared
which a good local model can be computed for reconstructigg ihe Eyclidean distance, especially for superresolving images
the test sample, where we take into account the underlyif@, rich texture where patch manifolds are highly nonlinear.
geometry of the data. Hence, the |dea.underly|ng t_hls W‘?rk\ﬁhen applying the proposed method in the super-resolution
to compute local models that agree with the Iow-d|men3|on§}0b|em, we select the NCSR algorithm [1] as a reference
intrinsic geometry of data. Low dimensionality allows SParsgiethod, which currently leads the state of the art in super-
representations of data, and the knowledge of sparsity G@Rojution. We rst show that the proposed AGNN and GOC
be efciently used for solving inverse problems in imagenethods outperform reference subset selection strategies such
restoration. as spectral clustering, soft clustering, and geodesic distance
Training subsets for learning local models can be detajased neighborhood selection. Finally, we perform compara-
mined in two ways; adaptively or nonadaptively. In adaptivgye experiments with the NCSR [1], ASDS [2], and SPSR [19]
neighborhood selection, a new subset is formed on the g(iper-resolution algorithms, which suggest that the proposed
for each test sample, whereas in nonadaptive neighborhgggthods can be successfully applied in super-resolution for
selection one subset is chosen for each test sample amgqlgng the state of the art one step further. We also discuss
a collection of training subsets determined beforehand {Re applicability of the presented methods to other image
a learning phase. Adaptive selection has the advantager&toration problems such as deblurring and denoising.
exibility, as the subset formed for a particular test sample The rest of the paper is organized as follows. In Section I
ts its characteristics better than a predetermined subset, kg give an overview of manifold-based clustering methods. In
the drawback is the higher complexity. In this work, we studgection 11l we formulate the neighborhood selection problem
both the adaptive and the nonadaptive settings and propose &\@ied in this paper. In Section IV we discuss the proposed
different algorithms for geometry-aware local neighborhooiGNN method. Then in Section V we describe the GOC
selection. algorithm. In Section VI we present experimental results, and
We rst present an adaptive scheme, called Adaptiig Section VIl we conclude.
Geometry-driven Nearest Neighbor search (AGNN). Our
method is inspired by the Replicator Graph Clustering (RGC)
[18] algorithm and can be regarded as an out-of-sample exten-
sion of RGC for local model learning. Given a test sample, the As our study has close links with the clustering of low-
AGNN method computes a diffused af nity measure betweeimensional data, we now give a brief overview of some
each test sample and the training samples in a manner thlastering methods for data on manifolds. The RGC method
is coherent with the overall topology of the data graph. TH&8], from which the proposed AGNN method has been
nearest neighbor set is then formed by selecting the trainiimgpired, rst constructs a data graph. An initial af nity matrix
samples that have the highest diffused af nities with the tegf then computed based on the pairwise similarities between
sample. data samples. The af nity matrix is iteratively updated such
The evaluation of the adaptive AGNN method in supethat the af nities between all sample pairs converge to the
resolution experiments shows a quite satisfactory image wmllective af nities that consider all paths on the data graph.
construction quality. We then propose a nonadaptive sche®ygectral clustering is another well-known algorithm for graph-
called Geometry-driven Overlapping Clusters (GOC), whidbased clustering [20], [21]. Samples are clustered with respect
seeks a less complex alternative for training subset selectitm.a low-dimensional embedding given by the functions of

II. CLUSTERING ON MANIFOLDS. RELATED WORK



slowest variation on the data graph, which encourages assigneh as rotations and scale changes are more dif cult to handle
ing neighboring samples with strong edge weights to the saimeevaluating the structural similarities between patches. In
cluster. The Laplacian eigenmaps method [22] builds on thedition to geometric transformation models, structural simi-
same principle; however, it targets dimensionality reductionlarities between image patches may be stemming from many

Geodesic clustering provides an extension of kheneans other low-dimensional, possibly parametrizable patch models
algorithm to cluster data lying on a manifold, where thas well. In [15], several parametrizable patch manifold models
Euclidean distance is replaced with the geodesic distance [2&} explored such as oscillating textures and cartoon images. In
[24]. In [25], a method is proposed for clustering data lyinthe treatment or reconstruction of image patches, local models
on a manifold, which extends the graph-based semi-supervissmputed from patches sharing the same structure re ect the
learning algorithm in [26] to a setting with unlabeled data. Thecal geometry of the patch manifold, while the comparison
diffusion matrix that diffuses known class labels to unlabeleaf patch similarities based on Euclidean distance does not
data in [26] is interpreted as a diffusion kernel in [25]necessarily achieve this. In this paper, we propose similarity
which is then used for determining the similarity between datssessment strategies that better take structural similarities
samples to obtain clusters. The works in [27], [28] also useto account than the simple Euclidean distance in image
the geodesic distance as a dissimilarity measure. They propuasgtoration.
methods for embedding the manifold into the tangent spaces ofsiven observed measurementsthe ill-posed inverse prob-
some selected reference points and perform a fast approximate can be generally formulated in a Banach space as
nearest neighbor search on the space of embedding.

While the above algorithms consider all data samples to
lie on a single manifold, several other methods model lowvhere is a bounded operatox, is an unknown data point
dimensional data as samples from multiple manifolds amshd is an error term. In image restoratignis the vectorized
study the determination of these manifolds. An expectatidarm of an observed image, is a degradation matrixs is
maximization approach is employed in [29] to partition théhe vectorized form of the original image, ands an additive
data into manifolds. The points on each manifold are themise vector. There are in nitely many possible data points
embedded into a lower-dimensional domain. The method tinat explainy; however, image restoration algorithms aim to
[30] computes a sparse representation of each data sampleetonstruct the original image from the given measurements
terms of other samples, where high coef cients are encouraggdoften by using some additional assumptionsxoiwhen
for nearby samples. Once the sparse coef cients are computedomposed of a down-sampling operator and a blurring oper-
data is grouped into manifolds simply with spectral clusteringtor, image restoration becomes single image super-resolution.
The method in [31] extends several popular nonlinear dimen-In image restoration with sparse representationsan be
sionality reduction algorithms to the Riemannian setting hystimated by minimizing the cost function
replacing the Euclidean distance with the Riemannian distance. o n ) 0
It is then shown that, if most data connections lie within the A =argmin  ky ko+ kK 2)
manifolds rather than between them, the proposed Riemannian . L ) )
extensions yield clusters corresponding to different manifoldéN€ré is a dictionary, - is the sparse representation>ofn

Finally, the generation of overlapping clusters in GOC* and > (.)'S a regularization parameter. It is common to
reconstruct images patch by patch and model the patches of

is also linked to soft clustering [32]. Rather than Strid% | blo i ing th i
partitioning the data into a set of disjoint groups, a membersHfp2S SParsely representable in Representing the extraction
tépej—th patchx; of x with a matrix multiplication as

score is computed between each data sample and each cl ) :

center in soft clustering. The cluster centers are then upda%‘éd: Rj X, the_ reconstruction of the over_all imagecan be
by weighing the samples according to the membership score: _resented via the operatoras shown n [1]. [2]. If the
In [33], a manifold extension of soft clustering is propose ictionary is well-chosen, one can efciently model the

where the membership scores are computed with a geodéjséf{:"’l pointsc using their sparse r.epresentatlons inOnce the
kernel instead of the Euclidean distance. sparse coef cient vector is estimated, one can reconstruct

the imagex as

y= x+ 1)

= A ®)
I1l. RATIONALE AND PROBLEM FORMULATION ] ) )
While a global model is considered in the above problem,

In patch-based image processing, one often would likgyeral works such as [1], [2], [34] propose to reconstruct
to develop tools that can capture the common Structurgsage patches based on sparse representations in local models.
inherently present in patches and use this information for the tnis case. one aims to reconstruct theh patchx; of
ef cient treatment of images. One important example is th@e unknown imagec from its degraded observatioy) by

invariance to geometric transformations. In practical imagfelecting a local model that is suitable fgr. The problem in
formation scenarios, different regions of the image are Iike@) is then reformulated as

to observe the same structure, exposed, however, to different n o]

. . . . . A — . 2
geometric transformations in different parts of the image j =argmin  Ky; i kot kjkg 4)
plane. While most patch-based methods inherently achieve I
invariance to translations as they extract patches from thiaerey; is thej-th patch from the observed image ; is
image over sliding windows, more complex transformatiores local (PCA) basis chosen for the reconstructiorygfand



7~ is the coef cient vector. The unknown patot) is then
reconstructed ag; = ;. The optimization problem in (4)
forces the coef cient vector’; to be sparse. Therefore, the
accuracy of the reconstructed patth in approximating the
unknown patclx; depends on the reliability of the local basis

i, i.e., whether signals are indeed sparsely representable in

j .
The main idea proposed in this paper is to take into account ) _ ) .
. . . _Fig. 2: lllustration of AGNN. The af nity betweery; andd, is a;, and the af nity
the manifold structure underlying the data when choosingp&weend, andd; is a; . The intermediate nodé; contributes by the produet; a;
neighborhood of training data points to learn a local basig.the overall af nity betweery; andd;. The sampled,o is just another intermediate
. L . node liked, . Summing the af nities via all possible intermediate nodes (i.e., all training

Our purpose is to develop a dissimilarity measure that is bett@hpies), the overall af nity is obtained as in (9).
suited to the local geometry of the data than the Euclidean dis-
tance and also to make the neighborhood selection procedure
as adaptive as possible to the test samples to be reconstrudégeralization of RGC and propose a strategy to compute and

LetD = fdigL, be asetom training data points; 2 R" diffuse the af nities between the test sample and all training
lying on a manifoldM and letY = fy; ng:l be a set oM Samples in a way that is consistent with the data manifold.

test data pointg; 2 R". As for the image restoration problem In the RGC algorithm, given a set of data poirits an
in (4), each test data poig} corresponds to a degraded imagdf nity matrix A = () is rst computed. The elements;
patch, and the training data pointsInare used to learn the Of A measure the similarity between the data podjtandd, .
local bases j. The test sampleg; are not expected to lie A common similarity measure is the G?u33|an kernel

on the patch manifoldM formed by the training samples; kd  dK2

however, one can assuny to be close toM unless the ay=exp ———

image degradation is very severe.

We then study the following problem. Given an observatioyhere k k denotes the ,-norm onR" andc; is a constant.
yj 2 Y of an unknown image patck;j, we would like 0 Then, the initial af nities are updated with respect to the
select a subseg D of training samples such that the PCA;ngerlying manifold as follows. The af nities are diffused by

basis ; computed fromS minimizes the reconstruction error|goking for anA matrix such that each rofy; of A maximizes
kx;  ®jk, where the unknown patck; is reconstructed as

R = ;*, and the sparse coef cient vector is given by Al =argmax (v’ Av): 7
n 0
A =argmin - ky; i jk§ + ko jk, (5) Since the maximization problem on the right hand side of (7)
i is solved by an eigenvector éf, the method seeks an af nity
Since the nondeformed samplg is not known, it is clearly matrix such that the similarities between the data sandple
not possible to solve this problem directly. In this work, wénd all the other samples iD (given by the rowA;) are
propose some constructive solutions to guide the selectionpgeportional to the diffused version of the similarities An
S by assuming thay; lies close toM . As the manifoldV  over the whole manifold via the produsA [ ; i.e., an af nity
is not known analytically, we capture the manifold structur@atrix is searched such thafl / AA[. The optimization
of training dataD by building a similarity graph whose nodegProblem in (7) is solved with an iterative procedure based
and edges represent the data points and the af nities betw&ha game theoretical approach to obtain a diffused af nity
them. In Sections IV and V we describe the AGNN and th@atrix A . The diffusion of the af nities are constrained to
GOC methods, which respectively propose an adaptive alfi@ s nearest neighbors of each potht
a nonadaptive solution for training subset selection for local In our AGNN method, we rst compute and diffuse the
basis learning from the similarity graph. af nities of training samples irD as proposed in [18]. This
gives us a similarity measure coherent with the global geom-

IV. ADAPTIVE GEOMETRY-DRIVEN NEARESTNEIGHBOR etry of the manifold. Meanwhile, unlike in RGC, our main
SEARCH purpose is to select a subset D of training samples for a

(6)

nc12

In this section, we present the Adaptive Geometry-driveéﬁven test samplg; 2'Y.. We thus need a tool for generalizing

Nearest Neighbor search (AGNN) strategy for selecting t
d ( ) dy d We propose to compute the af nities betwegnandD by

nearest neighbors of each test data point within the trainin%;n loViNaA foll Gi d it 2y
data points with respect to an intrinsic manifold structur€ "P'OYINGA  as follows. Given a test data poipt 2 Y, we

Our subset selection method builds on the RGC algorithitt COMPUte an initial af nity vectora whosei-th entry
[18], which targets the clustering of data with respect to ky, d K2

the underlying manifold. The RGC method seeks a globally a; = exp
consistent af nity matrix that is the same as its diffused version

with respect to the underlying graph topology. However, thmeasures the similarity betwegm and the training sample
RGC method focuses only on the initially available training;. We then update the af nity vector as follows. Denoting
samples and does not provide a means of handling initiatlye entries of the diffused af nity matribd by &, rst the
unavailable test samples. We thus present an out-of-sampteducta, & should give the component of the overall af nity

e above approach for test samples.

8

n012



Algorithm 1 Adaptive Geometry-driven Nearest Neighbomanifold twisting onto itself have a small diffused af nity
search (AGNN) and are not included in the same subset. A summary of the
12 Input: proposed AGNN method is given in Algorithm 1.

D = fdig[,, : Set of training samples
yj 2Y : Test sample
C1, C2, : Algorithm parameters

2: AGNN Algorithm: V. GEOMETRY-DRIVEN OVERLAPPING CLUSTERS
3: Form af nity matrix A of training samples with respect to (6). . . .
4: Diffuse the af nities inA to obtainA as proposed in the RGC method [18]. As we will see in Section VI, the AGNN method presented
5: Initialize the af nity vectora between test samplg and the training samples as in Section |V is ef cient in terms of image super-resolution
in (8). . . .
6: Diffuse the af nities ina to obtaina® with respect to (10). performance. However, it may have a high computational
7: Determine seS of nearest neighbors of; by selecting the training samples with complexity and considerable memory requirements in settings
the highest af nities as in (11). . L . . .
8: output: with a large training seD, as the size of the af nity matrix
S : Set of nearest neighbors gf in D. grows quadratically with the number of training samples and

the subset selection is adaptive (repeated for each test sample).

For this reason, we propose in this section the Geometry-
betweeny; andd; that is obtained through the samplie  driven Overlapping Clusters (GOC) method, which provides
if there is a sampled, that has a high af nity with both a computationally less complex solution for obtaining the
di andy;j, this means that the afnity betweed, andy; nearest neighbors of test samples.
should also be high due to the connection established via therhe GOC algorithm computes a collectidrg g, of
intermediate node, (see the illustration in Figure 2). NotesubsetsS, D of the training data set, which are to be used
that the formulation in (7) also relies on the same idea. W local basis computation. Contrary to the AGNN method,
thus update the af nity vectom such that itsi-th entrya  the subsetsSy D are determined only using the training

becomes proportional to data and are not adapted to the test samples. However, the
NG numberC of subsets should then be suf ciently large to have
a, a (9) the desired adaptivity for capturing arbitrary local variations.
1=1 Due to the large number of subsef are not disjoint in

ie., the total af nity between sampledi andy; obtained general; hence, can be regarded as overlapping clusters. In

through all nodeg, in the training data graph. This suggest%he following, we rst describe our method for forming the
that the initial af nities in the vectoma should be updated asclusters and then propose a strategy to select some parameters

A a, which corresponds to the diffusion of the af nities onthat.determlne the size and the structure of the clusters.
Given the number of cluster€ to be formed, we rst

the graph. Repeating this diffusion processmes, we get the X X
determine the central data point 2 D of each clusteiSy.

diffused af nities of the test sample as X X ) ) X
In our implementation, we achieve this by rst clusteriiy
a=(A) a (20) with the K-means algorithm, and then choosing eaghas

" , , the point inD that has the smallest Euclidean distance to the
wherea; gives the nal diffused af nity betweery; anddi. .onter of thek-th cluster given by K-means.

This generalizes the idea _in (7) to initially unavailable (_jata The training data points are used as the kickoff for the
samples; and hence, provides an out-of-sample extensiorffnation of the clustersS,. Given the central sample,

the diffu;ion approach i,n RGC', The .pargmeteshould .b.e the clusterSy is formed iteratively with the GOC algorithm
chosen in a way to permit a suf cient diffusion of the af nities.j| ;strated in Figure 3 as follows. We rst initializ& as

However, it should not be too large in order not to diverge too

much from the initial af nities ina. In our experiments we S2 = Nk ( k) (12)

have observed that = 2 gives good results in general.
Once the af nitiesa’ are computed, the subs®tconsisting

of the nearest neighbors gf can be obtained as the sample

in D whose af nities toy; are higher than a threshold

whereNk ( k) denotes the set of the -nearest neighbors of
sk in D with respect to the Euclidean distance. Then in each
iteration|, we update the clustes}, as
[
S=fd 2D :a’ o mlaxafg (12) S| Nk (di) (13)
di2s| !

where0 < ¢, < 1. The samples ii$ are then used for learning ) ) ‘ . . .
a PCA basis to reconstrugt. The thresholdc, should be by including all samples in the previous iteration as well as
chosen suf ciently high to select only the similar patches ti1€ir K -nearest neighbors. Hence, the clusters are gradually
the reference patch, however, it should not be selected fogPanded by following the nearest neighborhood connections
high in order to have suf ciently many neighbors necessaf) e data graph. This procedure is repeated fiterations
for computing a basis. I contains too few samples, theSC that the nal set of clusters is given by
thresholdc? can be adapted tq incregse t_he number_ Qf samples £ScgC., = fStgl.,: (14)
or a sufcient number of points with highest af nities can
be directly included inS. The proposed AGNN method for The expansion of the clusters is in a similar spirit to the af nity
determining training subsets gets around the problem depictéffusion principle of AGNN; however, is computationally
in Figure 1(b), since points lying at different sides of anuch less complex.



Algorithm 2 Geometry-driven Overlapping Clusters (GOC)

1: Input:
D = fdig[,, : Set of training samples
C: Number of clusters
c3: Algorithm parameter

2: GOC Algorithm:
3: Determine cluster centersy of all C clusters (possibly with the K-means algo-
rithm).
4: fork=1; :C do
5: Fix parameteiL 0= Ly at an initial valueL .
) ) ) 6: forK%=1; ‘K max do
Fig. 3: lllustration of the GOC algorithm. The clust8k around the central sample, 7 Form clusterS, = StoK 0 as described in (12)-(14).
is formed graduallySi is initialized with SE containing theK nearest neighbors of 8 Evaluate decay rate functidi(L o; K ) given in (16)
k (K =3 in the illustration). Then in each iteratidn SL is expanded by adding the 9 end for ' '
nearest neighbors of recently added samples. 10: SetK as thek © value that minimizesT(L o; K 9).
11: for L°=1; iLmax do
12: Form clusterS, = St X as described in (12)-(14).
13: Evaluate decay rate functidi(L % K ) given by (16).

In the simple strategy presented in this section, we haié gmtiLfor thel.© value that minimize${(L %K )
. . - . . € as thei value that minimize: ) .
two important parameters to set, which essentially in uen%: Determine clusteS, asSU*  with the optimized parameters.
the performance of learning: the number of iteratiangnd  17: end for
the number of sample$ in each small neighborhood. In thels'fositggzi'l . Set of overlapping clusters i .
following, we propose an algorithm to adaptively set these
parameters based on the local geometry of data. Our method
is based on the observation that the samples in each cluster _ _ _
will eventually be used to learn a local subspace that provide@rmalization of the function (L; K ) is required. We de ne
an approximation of the local tangent space of the manifold.
Therefore,Sk should lie close to a low-dimensional subspace ML:K )= I (L;K)=minfj StX j 1; ng (16)
in R", so that nearby test samples can be assumed to have a
sparse representation in the basis computed fromS,. We o o _
characterize the concentration of the sampleSyiraround a Wherej ] denotes the cardinality of a set. The denomina-
low-dimensional subspace by the decay of the coef cients 8" minfj S=* j 1, ng of the above expression gives the
the Samp'es in the local PCA basis. maXimUm pOSSible Value df(L, K ) in CIUSterSL’K . Hence,
We omit the cluster index for a moment to simplify the normalization of the coefcient decay function by its

the notation and consider the formation of a certain clust&@ximum value prevents the bias towards small clusters.

S = S,. With a slight abuse of notation, 18- stand forthe ~ We can nally formulate the selection df, K as(L;K ) =
clusterS that is computed by the algorithm described abov&g min ok o>  ML%KY where is a bounded parameter
with parameterd. andK . Let =[ 1 : ,] be the PCA domain. This optimization problem is not easy to solve exactly.
basis computed with the samples $) where the principal One can possibly evaluate the valuesgk;K ) on a two-
vectors 1;:::; » 2 R" are sorted with respect to thedimensional grid in the parameter domain. However, in order
decreasing order of the absolute values of their correspondifigreduce the computation cost, we approximately minimize
eigenvalues. For a training poigk 2 S, let d; :Pdi s the objective by optimizing one of the parameters and xing
denote the shifted version of where s = jSj 1 ,,<d| the other in each iteration. We rst x the number of iterations

is the centroid of clusteB. We de ne L at an initial value and optimize the number of neighbiérs
Then, updating and xind< , we optimizeL.
. — i X X .3 2 The computation of the parametérsandK with the above
I(L;K)=min | qi di . . .
_ _ procedure determines the clusters as in (14). The samples in
g=1 d;2StK . .
N (15) each cluste5¢ are then used for computing a local basis.

s ! 2 The proposed GOC method is summarized in Algorithm 2.
Since the proposed GOC method determines the clusters not
only with respect to the connectivity of the data samples on

which gives the smallest number of principal vectors t#€ graph, but also by adjusting the size of the clusters with
generate a subspace that captures a given propocsionf respect to the local geometry, it provides a solution for both
the total energy of the samples ) where0 < c3 < 1. We Of the problems described in Figures 1(b) and 1(c).

propose to set the parametérsK by minimizing the function  In the proposed GOC method, contrary to AGNN, we need
I (L;K ), which gives a measure of the concentration of the de ne a strategy to select the PCA basis that best ts a given
energy ofS around a low-dimensional subspace. Howevetgst patch. Given a test patgh, we propose to select a basis
in the case thaB containsm n samples where is the ¢ by taking into account the distance betwegnand the
dimension of the ambient space, the subspace spannedcégtroid y of the clusterSy (corresponding to ), as well
the rst m 1 principal vectors always captures all of theas the agreement betwegnand the principal directions iny.
energy inS; thereforel (L; K ) takes a relatively small value;Let | =[ 1::: (] denote the submatrix of x consisting
ie., I(L;K) m 1. In order not to bias the algorithm of the rst r principal vectors, which give the directions that
towards reducing the size of the clusters as a result of thisgetermine the main orientation of the cluster. We then choose

q:]_ di 2 SLK



the basis ¢ that minimizes

Yi kO

ky,- kok2
2
(17)

where > 0Oisa Weight parameter. While the rst term aboveFig' 4: Two of the reference patches and their rotated versions used in the experiment
minimizes the distance to the centroid of the cluster, the second
term maximizes the correlation between the relative patch
positiony; ko and the most signi cant principal directions.
Once the basis indekk is determined as above, the test patch

y; is reconstructed based on a sparse representatioR.in

k=argmin ky; ok, (D7
kO
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VI. EXPERIMENTS
In this section, we experimentally evaluate the performance . o B
. —Kmeans ---
of the proposed methods. In Section VI-A we rst present an o) - : : 10
experiment which demonstrates that the proposed neighbor- Number of Clusters
hood selection strategies can be successfully used for capturing Fig. 5: Percentage of patches carrectly included in the clusters

structural similarities of images. Then, in Section VI-B we test

our algorithms in image super-resolution. Finally in SeCtiO{r)]atches) used in different repetitions of the experiment. It
VI-C we discuss the applicability of the proposed methods 10 be observed that the AGNN method yields the best

other image restoration applications and overview some res C . o
obtained in image deblurring and denoising. transformation-invariant similarity assessment performance.
Contrary to methods based on simple Euclidean distance,
AGNN measures the similarity of two patches by tracing all
paths on the manifold joining them. Therefore, it is capable
Natural images often contain different observations of thsf following the gradual transformations of structures on the
same structure in different regions of the image. Patches thatch manifold and thus identifying structural similarities of
share a common structure may be generated from the sasaéches in a transformation-invariant manner.
reference pattern with respect to a transformation model that
can possibly be parameterized with a few parameters. One
example to parametrizable transformation models is geometﬁc
transformations. In this section, we evaluate the performancdn this section, we demonstrate the bene ts of our neighbor-
of the proposed AGNN strategy in capturing structural similahood selection strategies in the context of the NCSR algorithm
ities between image patches in a transformation-invariant wgy], which leads to state-of-the-art performance in image
We generate a collection of patches of sifE 10 pixels, by super-resolution.
taking a small set of reference patches and applying geometridhe NCSR algorithm [1] is an image restoration method
transformations consisting of a rotation with different anglegbat reconstructs image patches by selecting a model among
to each reference patch to obtain a set of geometricallyset of local PCA bases. This strategy exploits the image
transformed versions of it. Figure 4 shows two refereng®nlocal self-similarity to obtain estimates of the sparse coding
patches and some of their rotated versions. The data set usecbief cients of the observed image. The method rst clusters
the experiment is generated from 10 reference patches, whitdining patches with the K-means algorithm and then adopts
are rotated at intervals of 5 degrees. the adaptive sparse domain selection strategy proposed in
In order to evaluate the performance of transformatiofi2] to learn a local PCA basis for each cluster from the
invariant similarity assessment, we look for the nearest neigbstimated high-resolution (HR) images. After the patches are
bors of each patch in the whole collection and identify theoded, the NCSR objective function is optimized with the
“correct” neighbors as the ones sharing the same structuterative Shrinkage Thresholding (IST) algorithm proposed in
i.e., the patches generated from the same reference pal8B]. The clustering of training patches with the K-means
Three nearest neighbor selection strategies are tested in algorithm in [1] is based on adopting the Euclidean distance
experiment, which are AGNN, neighbor selection with respeas a dissimilarity measure. The purpose of our experiments
to Euclidean distance, and K-means clustering. In AGNN, the then to show that the proposed geometry-based nearest
neighborhood size that gives the best algorithm performangeighbor selection methods can be used for improving the
is used. The Euclidean distance uses the same neighborhpedormance of an image super-resolution algorithm such as
size as AGNN, and the number of clusters in K-means is SE€SR.
as the true number of clusters, i.e., the number of referenceNMe now describe the details of our experimental setting
patches generating the data set. The correct clustering ratesfardéhe super-resolution problem. In the inverse problem
shown in Figure 5, which are the percentage of patches that are+ in (1), x andy denote respectively the lexicographical
correctly present in a cluster (each neighborhood is consideregresentations of the unknown imade and the degraded
as a cluster in AGNN and Euclidean distance). The horizoniatageY . The degradation matrix= DH is composed of a
axis shows the number of clusters (i.e., number of referendewn-sampling operatdd with a scale factor ofj=3 and a
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Correct clustering rate (%)

A. Transformation-invariant patch similarity analysis

Image super-resolution



distance (GeoD). Among the clustering methods, Kmeans
and FCM employ the Euclidean distance as a dissimilarity
measure, while SC and RGC are graph-based methods that
consider the manifold structure of data. When testing these
four methods, we cluster the training patches and compute a
PCA basis for each cluster. Then, given a test patch, the basis
of the cluster whose centroid has the smallest distance to the
test patch is selected as done in the original NCSR algorithm
where K-means is used. In the GeoD method, each test patch is
Fig. 6: Test images for super-resolution: Buttery, Bike, Hat, Plants, Girl, Parro{econStrUCted with the PCA basis CompUted from its nearest
Parthenon, Raccoon, Leaves, Flower. neighbors with respect to the geodesic distance numerically
computed with Dijkstra's algorithm [37]. The idea of nearest

. . . - neighbor selection with respect to the geodesic distance is also
Gauss_|an lterH .O.f S'Ze7. 7with a_standard deviation dt6, in the core of the methods proposed in [27] and [28]. Note
and is an additive noise. We aim to recover the unknow,

. . that the four reference clustering methods and GOC provide
image vectox from the observed image vectpr We evaluate

. . S nonadaptive solutions for training subset selection, while the
the proposed algorithms on thi® images presented in FlgureGeoD and the AGNN methods are adaptive

6, which differ in their frequency characteristics and content. The parameters of the AGNN algorithm are setsas 35

For color image_s, we apply the single image SR algorith umber of nearest neighbors in the diffusion stage of RGC
only on the luminance channel and we compute the PS

: 1), = 2 (number of iterations for diffusing the af nity
and SSIM [36] only on the luminance channel for coherenc: atrix), ¢, = 10 (Gaussian kernel scale), and = 0:9

B|e3|des ESNR and SS.IM’ the :/l'sual quality of the images ('éfnity threshold). The parameters of the GOC algorithm
asg usle asa cotmrf)arls?n _mZ@e r'%‘ din th are set aC = 64 (number of clusters)gz = 0:5 (threshold
verlapping patches of Si are used in the exper- 4o ning the decay function), = 150, andr = 8 (parameters

iments. The original NCSR algorithm initializes the trainingfr selecting a PCA basis for each test patch). The number of

setD by extracting patches from several images in the sc fusters in the other four clustering methods in comparison are

space of the HR image. However, in our implementation W8so set to the same value @s= 64. The size of the clusters
initialize the set of training patches by extracting them on

N - o o kX/ith the FCM algorithm are selected roughly the same as the
from the Iow-rensc_)lunon |magerh .e., the initial training cluster sizes computed with K-means. The total number of
patchesd; 2 R in D - fd‘.gi = are extracted from _the iterations and the number of PCA basis updates are chosen as
observed Iow-rgsolutlon (.LR) 'mage vecf‘t;or.We learn online 1000and4 in the NCSR algorithm. All the general parameters
PCA bases using the training patchesDirwith the proposed

- for the NCSR algorithm are selected as Dong et al. [1]. In
AGNN and GOC methods. In the original NCSR method, 'this way, we can maintain consistency in the comparison of

_everyP iterations of_the IST al_lg_orithm, the training sBt the methods related to NCSR algorithm.

is updated by extracting the training patches from the CurreNtive evaluate the GOC algorithm in three different settings.
version of the reconstructed imageand the PCA bases aren the rst setting the cluster size parametets and K
updated as well by repeating the neighborhood selection W}ﬂ}a estimated adaptively for each cluster with the strategy

the updated training data. In our experiments, we use the s%?gposed in Algorithm 2, which is denoted as aGOC. In the

tralmmsg p?tChf/?;fr the Wholle ?Igonthm. thods AGNN aecond setting, denoted avGOC, the paraméteanidK are
n >ection VI-BZ, we evaluate our methods anfot adapted to each cluster; all clusters are formed with the

GOC by comparing their performance to some other clusterig me parameter values, whereand K are computed by
or nearest neighbor selection strategies in super—resolutionhﬂr}]imizing the average 'value of coef cient decay function

Section VI-B2, we provide comparative experiments with sey- L:K ) over all clusters of the same image. The parameters

eral widely used super-resolution algorithms and show that o e thus adapted to the images, but not to the individual

proposed manifold-based neighborhood selection tecmiq%ﬁ?sters of patches of an image. Finally, in the third setting,

can be used for improving the state of the art in SUPESenoted mGOC, the parametéraindK are manually entered

resolution. and used for all clusters of the same image. The parameter

In Sections VI-B1 and VI-B2, the results for the algorlthm%lues provided to the algorithm for each image are set as

N comparison are obtained by using the .software paCkaQﬁa best values obtained with an exhaustive search. Therefore,
made publicly available by the corresponding authlors mGOC can be considered as an oracle setting.

1) Performance Evaluation of AGNN and GO®@te com- A .
. .. The results are presented in Figure 7, Figure 8, and Table
pare the proposed AGNN and GOC methods with 4 d'ff Figures 7 and 8 provide a visual comparison between

ferent clustering algorithms; namely, the K-means algonthﬂqe image reconstruction qualities obtained with the K-means
|

(Kmeans), Fuzzy C-means clustering algorithm (FCM) [32 ustering algorithm and the proposed AGNN and GOC meth-

Spectral Clustering (SC) [20], Replicator Graph Clusteringds for the Buttery and the Hat images. It is observed

(RGC) [18]; and also with K-NN search using geodes%at AGNN and GOC produce sharper edges than K-means.
we would like to thank the authors of [1], [2], [18], [19], [20], [32] and Moreover, the visual artifacts produced by K-means such as

[37] for making their software packages publicly available. the phantom perpendicular bands on the black stripes of the



(a) LR image (b) Original HR image (c) NCSR-Kmeans (d) NCSR-AGNN (e) NCSR-GOC

(f) Original HR close-up (g) NCSR-Kmeans close-up (h) NCSR-AGNN close-up (i) NCSR-GOC close-up

Fig. 7: Comparison of SR results @). It can be observed that NCSR-AGNN and NCSR-GOC reconstruct edges with a higher contrast than NCSR-Kmeans. Atrtifacts visible with
NCSR-Kmeans (e.g., the oscillatory phantom bands perpendicular to the black stripes on the butter y's wing) are signi cantly reduced with NCSR-AGNN and NCSR-GOC.

(a) LR image (b) Original HR image (c) NCSR-Kmeans (d) NCSR-AGNN (e) NCSR-GOC

(f) Original HR close-up (g) NCSR-Kmeans close-up (h) NCSR-AGNN close-up (i) NCSR-GOC close-up

Fig. 8: Comparison of SR results 8). NCSR-Kmeans produces artifacts such as the checkerboard-like noise patterns visible on plain regions of the cap, which are prevented by
NCSR-AGNN or NCSR-GOC.

butter y and the checkerboard-like noise patterns on the cdjis reproduces the shadowy patterns of the wall also on the
are signi cantly reduced with AGNN and GOC. The ef ciencycap. On the other hand, the AGNN method groups together
of the proposed methods for removing these artifacts cpatches that have a connection on the data graph. As the
be explained as follows. When image patches are clusteqgtches are extracted with overlapping windows shifting by
with the K-means algorithm, the similarity between patcheme pixel, AGNN and GOC may have a stronger tendency than
is measured with the Euclidean distance. Therefore, whEmameans for favoring patches from nearby or similar regions
reconstructing a test patch, the algorithm tends to use a basisthe image that all share a common structure, which is also
computed with patches that have similar intensity values. Then rmed by the experiment in Section VI-A. The proposed
nonuniformity of the pixel intensities along the black stripemethods yield local bases better tted to the characteristics of
of the LR Butter y image thus propagates to the reconstructguitches, therefore, less artifacts are observed.

HR image as well, which produces the phantom bands on the

wing (due to the too low resolution, the black stripes on the LR In Table | the performance of the compared clustering
image contain periodically appearing clear pixels contaminatgtethods are measured with the PSNR and the SSIM metrics.
by the yellow plain regions on the wing). Similarly, in the Haf5raph-based methods are generally seen to yield a better
image, the clusters used in learning a basis for reconstruct@@’formance than methods based on Euclidean distance. This
the plain regions on the cap contain also patches extrac&h rms the intuition that motivates our study; when selecting

from the wall, which have a similar intensity with the capheighborhoods for learning local models, the geometry of the
data should be respected. As far as the average performance is
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TABLE I: PSNR (top row, indB) and SSIM (bottom row) results for the luminance components of super-resolved HR images for different clustering or neighborhood selection
approaches: Spectral Clustering (SC) [20]; Fuzzy C-means clustering algorithm (FCM) [32]; K-means clustering (Kmeans); Replicator Graph Clustering (RGC) [18]; kNN search
with Dijkstra Algorithm (GeoD) [37]; and our methods GOC and AGNN.

Images H Butter y Bike Hat Plants Girl Parrot ~ Parthenon Raccoon Leaves Flower Average
2815 2473 3128 3398 3365 3045  27.19 2924 2750 2945 2956
SCRO1 |l 50193 08026 08723 09198 08255 09170 07509 07659 00242 08567 0.8554
2820 2476 3125 3399 3365 3047  27.25 2925  27.68 2950  29.60
FCMB2 1| 09205 08040 08726 09205 08256 09174 07531  0.7663 0.9271 0.8575  0.8565
2814 2479 3131 3407 3364 3053  27.20 2928 27.67 2947 2961
Kmeans || 9504 08050 08730 09213 08254 09178 07517 07668 09265 0.8567 0.8565
2845 2480 3137 3420 3365 3057  27.22 2927  27.90 2950  29.69
RECI8 || o234 08061 08739 00219 08254 09181 07525 07658 09317 08576 0.8576
2861 2482 3142 3416 3363 3044  27.24 2925  27.98 2954  29.71
CeoD 71| 9257 08070 08746 09219 08250 09178 07530  0.7650 0.9323 0.8587  0.8581
28.34 2485 3142 3417 33.66 30.68  27.23 2928 27.89 2955  29.71
aGOC 1| 9222 08076 08747 009224 08258 09191 07528 07668 09317 0.8591  0.8582
28.46 2485 3144 3418 3365 3063  27.23 2927  27.92 2954  29.72
acoc 09239 08082 0.8744 0.9227 0.8257 00187 07530  0.7663 0.9324 0.8588  0.8584
2854 2490 3143 3420 3367 3071 2725 2928 27.95 2955  29.75
MGOC |l 59251 08085 0.8748 09222 0.8261 09192 07530 07671 0.9324 0.8593  0.8588
2878 2487 3146 3416 3367 30.60 2729 2926 2801 2961  29.77
AGNN 09266 0.8081 0.8749 09218 0.8260 09188 0.7540  0.7661 0.9324 0.8601  0.8589

concerned, the AGNN method gives the highest reconstructiomage. This discrepancy can be explained with the difference
quality and is followed by the GOC method. The performande the characteristics of the patch manifolds of these two
difference between AGNN and GOC can be justi ed withmages. The patches of the Buttery image contain high-
the fact that the training subset selection is adaptive to tfrequency textures; therefore, the patch manifold has a large
test patches in AGNN, while GOC is a nonadaptive methadirvature (see, e.g., [38] for a study of the relation between
that offers a less complex solution. In particular, with a northe manifold curvature and the image characteristics). Conse-
optimized implementation of our algorithms, we have observegiently, the proposed methods adapted to the local geometry
that GOC has roughly the same computation time as K-meansé,the manifold perform better on this image. On the other
while the computation time of AGNN is around three timekand, the Girl image mostly contains weakly textured low-
K-means and GOC in the tested images on an Intel Coreffequency patches, which generate a rather at patch manifold
2.6GHz under the Matlab R2015a programming environmeiaf, small curvature. The Euclidean distance is more reliable as
as shown in Table Ill. After the proposed AGNN and GO@ dissimilarity measure on at manifolds compared to curved
methods, GeoD gives the best average performance. Whilanifolds as it gets closer to the geodesic distance. Hence, the
this adaptive method ensures a good reconstruction qualfigrformance gain of geometry-based methods over K-means
it requires the computation of the geodesic distance betwdsmmuch smaller on the Girl image compared to Buttery.

each test patch and all training patches. Therefore, it is COm\ext, the comparison of the three modes of the GOC
putationally very complex. Although several works such aggorithm shows that aGOC and avGOC vyield reconstruction
[27] and [28] provide solutions for fast approximations of thgualities that are close to that of the oracle method mGOC.
geodesic distance, we observe that in terms of reconstructifiijs suggests that setting the parametesndK with respect
quality AGNN performs better than GeoD in most imagese the PCA coef cient decay rates as proposed in Algorithm 2
This suggests that using a globally consistent af nity measUgovides an ef cient strategy for the automatic determination
optimized with respect to the entire graph topology provides cluster sizes. While the average performances of aGOC
a more re ned and precise similarity metric than the geodesi,g ayGOC are quite close, interestingly, aGOC performs
distance, which only takes into account the shortest pafhstter than avGOC on Buttery and Leaves. Both of these

between samples. two images contain patches of quite varying characteristics,

Concerning the performances of the clustering methof:-» Nighly textured regions formed by repetitive edges as
on the individual images, an important conclusion is thtell as weakly tgxtgred regions. As_ the structures. of the
geometry-based methods yield a better performance especiBjches change signi cantly among different clusters in these
for images that contain patches of rich texture. The AGNN129€S, optimizing the cluster size parameters individually for
and GOC methods provide a performance gain of respectivégch cluster in aGOC has an advantage over using common
0:64 dB and0:4 dB over K-means (used in the original NCSFParameters in avGOC.
method) for the Buttery image. Meanwhile, all clustering 2) Improvements over the State of the Art in super-
methods give similar reconstruction qualities for the Gimesolution: In this section, we present an experimental com-
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TABLE II: PSNR (top row, indB) and SSIM (bottom row) results for the luminance components of super-resolved HR images for different super-resolution algorithms: Bicubic
Interpolation; SPSR (Peleg et al.) [19]; ASDS (Dong et al.) [2]; NCSR (Dong et al.) [1]; NCSR with proposed GOC; NCSR with proposed AGNN.

Images Buttery Bike Hat Plants Leaves Average| Parrot Parthenon Raccoon Girl Flower Average
o 2241 2177 2822 2969 2173 2476 | 2654 2520 2754 3165 2616 27.42
Bicubic 07705 0.6299 0.8056 0.8286 0.73020.7530 | 0.8493  0.6528  0.6737 0.7671 0.72950.7345
2674 2431 30.84 3283 2584 2811 | 2968  26.77 2900 3340 2889 2955

SPSRUSL 1| 08973 07830 08674 09036 0.88920.8681 | 0.9089 07310 07562 0.8211 0.841508117
2734 2462 3093 3347 2680 2863 | 3000  26.83 2924 3353 2019 29.76

ASDS 2] 09047 07962 0.8706 0.9095 0.90580.8774 | 0.0093  0.7349 07677 0.8242 0.84800.8168
2807 2474 3120 3405 2746 2912 | 3049  27.18 2927 3366 29.50 30.02

NCSR 1] 09156 0.8031 0.8704 00188 0.92]190.8860 | 0.9147 07510 0.7707 0.8276 0.8563 | 0.8241
2847 2485 3144 3416 280% 2939 | 3071 2723 2928 3365 2958 30.09

NCSR-GOC |l 59p41 08084 08747 09232 09339 08929 | 0.9192 07526 07666 0.8257 0.860D 0.8248
2881 2486 3147 3419 2806 2948 | 30.60 27.30 2927 3367 29.60 | 30.09

NCSRAGNN 1| (9273 08080 08755 09223 09332 08933 | 09189 07546  0.7662 0.8261 0.8601| 0.8252

TABLE III: Time (s) results for the luminance components of super-resolved HR images for NCSR (Dong et al.) [1]; NCSR with proposed GOC; NCSR with proposed AGNN.

Images Buttery Bike Hat Plants Leaves Parrot Parthenon Raccoon Girl Flowéverage
NCSR [1] 261 229 213 229 233 220 481 362 213 226 267
NCSR-GOC 271 266 253 261 278 256 518 383 246 264 299
NCSR-AGNN 960 1039 467 578 1146 505 2541 1637 416 830 1012

parison of several popular super-resolution algorithms; namelged in other image restoration applications than superresolu-
the bicubic interpolation algorithm, ASDS [2], SPSR [19]tion as well. We now brie y overview the applicability of our
and NCSR [1]. We evaluate the performance of the NCS&gorithms to other problems.

algorithm under three different settings where the local basespye (st evaluate our method in the image deblurring

are computed with K-means, AGNN, and GOC. The GOGypjication. We compare GOC with the K-means clustering
method is used as in Algorithm 2 (denoted as aGOC in thgyqrithm within the framework of the NCSR method [1]. The
previous experiments). _ algorithms are tested on the images shown in Figure 9. A
The experiments are conducted on the same images ag;i\;ssian blur kernel of standard deviatiib pixels is used.
the previous set of exper|meqts. The total number of |terat|omong with the blurring, the images are also corrugted with an
and the number of PCA basis updates of NCSR are seleciggiiive white Gaussian noise of standard deviatidh The

respectively as960 and 6, while the other parameters are,;rameters of GOC are set 6s= 64 (number of clusters),

chosen as before. The results presented in Table Il show tpat- .5 (threshold de ning the decay function), = 150

the state of the art in super-resolution is led by the NCSfqr = 8 (parameters for selecting a PCA basis for each test

method [1]. The performance of NCSR is improved when it isaichy. Al the general parameters for the NCSR algorithm are

coupled with the AGNN and GOC strategies for selecting locgbjected as Dong et al. [1] in order to maintain the consistency.

models. In Table Il the images are divided into two categories .
The PSNR and FSIM [39] measures of the reconstruction

as those with high-frequency and low-frequency content. ' '~ ) ; .
The average PSNR and SSIM metrics are reported in pdiHalities are presented in Table IV. The results obtained with

groups. It can be observed that the advantage of the propog‘é;image restoration algorithms FISTA (Portilla et al.) [40]

neighborhood selection strategies over K-means is especié?"‘ ASDS (Dong et al.) [2] reported in [1] for the same experi-

signi cant for high-frequency images. In images with low.nents are also given for the purpose of comparison. The results

frequency content, K-means gives the same performance asstﬂgw that Fhe proposed GoC algorithm can pe effectively used
proposed methods. As the patch manifold gets atter, cIustJ&r improving the image reconstruction quality of the NCSR

obtained with K-means and the proposed methods get simil%‘.athOd in deblurring applications. The GOC method either

Hence, we may conclude that the proposed geometry—bag erforms the K-means clustering algorithm or yields a quite
e performance when coupled with NCSR. Moreover, one

neighborhood selection methods can be successfully used § b hat the b PSNR value is ai by th
improving the state of the art in image super-resolution, who§8n OPserve that the best average value Is given by the

ef cacy is especially observable for sharp images rich in high’0Posed method, whose bene ts are especially observable for
frequency texture. images with signi cant high-frequency components such as

Butter y, Cameraman, and Leaves. More detailed results on
S . image deblurring can be found in the accompanying technical
C. Applicability to other restoration problems report [41], where the algorithms are also tested with a uniform

The methods proposed in this paper aim to determine pafalr kernel and their performance comparison is observed to
similarity in a geometry-aware manner and can potentially e similar.
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TABLE IV: PSNR (top row, indB) and FSIM (bottom row) results for the luminance compggents of deblurred images for different deblurring algorithms for a Gaussian blur
kernel of standard deviatioh:6 pixels and an additive white Gaussian noise of standard deviat®nFISTA (Portilla et al.) [40]; ASDS (Dong et al.) [2]; NCSR (Dong et al.)
[1]; NCSR with proposed GOC.

Images H Buttery Boats C.Man House Parrot Lena Barbara Starsh Peppers Leaves Average
30.36 29.36 26.81 31.50 31.23 29.47 25.03 29.65 29.42 29.36 29.22
FISTA [40] 0.9452 0.9024 0.8845 0.8968 0.9290 0.9011 0.8415 0.9256 0.9057 0.9393  0.9071
29.83 30.27 27.29 31.87 32.93 30.36 27.05 31.91 28.95 30.62 30.11
ASDS 2] 0.9126 0.9064 0.8637 0.8978 0.9576 0.9058 0.8881 0.9491 0.9039 0.9304 0.9115
30.84 31.37 28.27 33.69 33.40 31.17 28.02 32.23 30.01 31.62 31.06
NCSR [1] 0.9379 0.9348 0.9044 0.9339 0.9589 0.936(.9108 0.9533 0.9300 0.9514 0.9351
31.32 31.48 28.44 33.80 33.45 31.28 27.45 32.27 30.27 32.04 31.18
NCSR-GOC 0.9486 0.9413 0.9153 0.9375 0.9594 0.94290.9014 0.9554 0.9389 0.9587  0.9399

for comparing data samples lying on a manifold. We have
proposed two methods for data subset selection by taking into
account the geometry of the data, which is assumed to lie on a
manifold. Although the addressed problem has close links with
manifold clustering, it differs by the fact that the goal here is
not to obtain a partitioning of data, but instead select a local
subset of training data that can be used for learning a good
model for sparse reconstruction of a given input test sample.
The performance of the methods has been demonstrated in
Fig. 9: Test images for deblurring: Butter y, Boats, Cameraman, House, Parrot, Ler@, SUPEr-resolution application leading to a novel single-image
Barbara, Star sh, Peppers, Leaves. super-resolution algorithm which outperforms reference meth-
ods. The applicability to other restoration problems has also

Next, we discuss the applicability of our methods to imag
denoising. In the technical report [41], we present experi-
mental results where we test our AGNN algorithm in image

%een discussed.
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AGNN algorithm is compared to K-means for the clustering

2-
the image patches in image denoising with the NCSR methoih?

[1]. The two versions of the NCSR algorithm, coupled with
K-means and AGNN, are also compared with several other
- : . 1
denoising methods on a set of images corrupted with Gaussidh
noise of standard deviation=[5 10 15 20 50 10Q]While
the overall performances of the compared algorithms argl
close, SAPCA-BM3D [42] usually gives the best denoising
performance. The proposed NCSR-AGNN algorithm yields a
very similar performance to NCSR. A very slight improvement3]
in average PSNR is obtained over NCSR at small noise levels
(smaller than = 20), while this small advantage is lost
at larger noise levels. The results show that the performand8
of NCSR-AGNN tends to be better than NCSR on images
with strong and oscillatory high-frequency textures. This mays)
be due to the particular geometry of the patch manifold in
such images, which is easier to identify under noise, so th
the consideration of the geometry in assigning the similarities
helps improve the denoising performance.
[71
VIl. CONCLUSION
In this paper, we have focused on the problem of selecting]
local subsets of training data samples that can be used for
learning local models for image super-resolution. This stud{f!
has been motivated by the observation that the Euclidean
distance may not always be a good dissimilarity measure

5). The authors also thanke@my Aghaei Mazaheri for
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