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Algorithmes paralleles pour la bi-diagonalisation
de matrices

Résumé : Dans ce rapport, nous concevons et évaluons des algorithmes
paralleles pour la bidiagonalisation de matrices. Ces algorithmes travaillent
avec des tuiles (sous-blocs de la matrice) plutot qu’élément par éément. Nous
étudions et comparons la bidiagonalisation et la R-bidiagonalisation. Dans cette
derniére, on commence par une factorisation QR pour se ramener a une matrice
carrée. Nous établissons plusieurs formules pour les chemins critiques de nos
algorithmes. Nous rendons compte des résultats d’expériences menées sur un
noeud multi-coeur (en mémoire partagée) et sur plusieurs noeuds multi-coeurs
(en mémoire distribuée). Ces expériences démontrent la supériorité de nos al-
gorithmes pour une large classe de tailles et formes de matrices, ainsi que de
nombres de processeurs.

Mots-clés :  bidiagonalisation, R-bidiagonalisation, chemin critique, algo-

rithme glouton, arbre de réduction auto-adaptatif, matrice rectangulaire haute
et étroite.



Bidiagonalization with Parallel Tiled Algorithms 3

1 Introduction

This work is devoted to the design and comparison of tiled algorithms for the
bidiagonalization of large matrices. Bidiagonalization is a widely used kernel
that transforms a full matrix into bidiagonal form using orthogonal transforma-
tions. The importance of bidiagonalization stems from the fact that, in many
algorithms, the bidiagonal form is a critical step to compute the singular value
decomposition (SVD) of a matrix. The necessity of computing the SVD is
present in many computational science and engineering areas. Based on the
Eckart—Young theorem [18], we know that the singular vectors associated with
the largest singular values represent the best way (in the 2-norm sense) to ap-
proximate the matrix. This approximation result leads to many applications,
since it means that SVD can be used to extract the “most important” informa-
tion of a matrix. We can use the SVD for compressing data or making sense
of data. In this era of Big Data, we are interested in very large matrices. To
reference one out of many application, SVD is needed for principal component
analysis (PCA) in Statistics, a widely used method in applied multivariate data
analysis.

We consider algorithms for going from a “full” matrix to a condensed “band
bidiagonal” form using orthogonal transformations. We use the framework of
“algorithms by tiles”. Within this framework, we study: (i) the tiled bidiagonal-
ization algorithm BIDIAG, which is a tiled version of the standard scalar bidi-
agonalization algorithm; and (ii) the R-bidiagonalization algorithm R-BIDIAG,
which is a tiled version of the algorithm which consists in first performing the QR
factorization of the initial matrix, then performing the band-bidiagonalization
of the R-factor. For both bidiagonalization algorithms BIDIAG and R-BI1DI1AG,
we use HQR-based reduction trees, where HQR stands for the Hierarchical QR
factorization of a tiled matrix [14]. Considering various reduction trees gives
us the flexibility to adapt to matrix shape and machine architecture. In this
work, we consider many types of reduction trees. In shared memory, they are
named FLATTS, FLATTT, GREEDY, and a newly introduced auto-adaptive
tree, AUTO. In distributed memory, they are somewhat more complex and
take into account the topology of the machine. The main contributions are the
following:

e The design and comparison of the BIDIAG and R-BI1DIAG tiled algorithms
with many types of reduction trees. There is considerable novelty in this.
Previous work [24,25,31,33] on tiled bidiagonalization has only considered
one type of tree (FLATTS tree) with no R-BID1AG. Previous work [32]
has considered GREEDY trees only for the QR steps in BIDIAG (so m of
the m + n steps), it considers FLATTS tree for the LQ steps (n of the
m + n steps), and it does not consider R-BIDIAG. This paper is the first
to study R-BiD1acG for tiled bidiagonalization algorithm and to study
GREEDY trees for both steps (LQ and QR) of the tiled bidiagonalization
algorithm.

e A detailed study of critical path lengths for FLATTS, FLATTT, GREEDY
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4 Mathieu Faverge, Julien Langou, Yves Robert, Jack Dongarra

with BIDIAG and R-BIDIAG (so six different algorithms in total), which
shows that:

— The newly-introduced GREEDY based schemes (BIDIAG and R-BIDIAG)
are much better than earlier proposed variants with unbounded re-
sources and no communication: for matrices of p x ¢ tiles, p > q,
their critical paths have a length ©(qlog,(p)) instead of ©(pq) for
FLATTS and FLATTT

— On the one hand, BIDIAGGREEDY has a shorter critical path length
than R-BIDIAGGREEDY for square matrices; on the other hand, R-
BIDIAGGREEDY has a shorter critical path length than BiDIAG-
GREEDY for “tall and skinny” matrices. For example, for a p x
q tile matrix, when ¢ go to infinity, and p = B¢'*®, with 0 <
a < 1, then the asymptotic ratio between BIDIAGGREEDY and R-
BIDIAGGREEDY is ﬁ

e Implementation of our algorithms within the DPLASMA framework [5],
which runs on top of the PARSEC runtime system [6], and which enables
parallel distributed experiments on multicore nodes. All previous tiled
bidiagonalization study [24,25,31-33] were limited to shared memory im-
plementation.

e A practical auto-adaptative tree (AUTO) that self-tunes for increased per-
formance. This tree is especially useful in many practical situations. For
example, it is appropriate (1) when the critical path length is not a major
consideration due to limited number of resources or (2) when the intra-
node “communication” is expensive in which TS kernels are much faster
than TT kernels or (3) both.

e Experiments on a single multicore node, and on a few multicore nodes
of a parallel distributed shared-memory system, show the superiority of
the new algorithms on a variety of matrix sizes, matrix shapes and core
counts. The new AUTO algorithm outperforms its competitors in almost
every test case, hence standing as the best algorithmic choice for most
users.

The rest of the paper is organized as follows. Section 2 provides a detailed
overview of related work. Section 3 describes the BiD1AG and R-BiD1AG algo-
rithms with the FLATTS, FLATTT and GREEDY trees. Section 4 is devoted to
the analysis of the critical paths of all variants. Section 5 outlines our imple-
mentation, and introduces the new AUTO reduction tree. Experimental results
are reported in Section 6. Finally, conclusion and hints for future work are given
in Section 7.

Inria



Bidiagonalization with Parallel Tiled Algorithms 5

2 Related Work

This section provides an overview of the various approaches to compute the
singular values of a matrix, and positions our new algorithm with respect to
existing numerical software kernels.

Computing the SVD. The SVD of a matrix is a fundamental matrix fac-
torization and is a basic tool used in many applications. Computing the SVD of
large matrices in an efficient and scalable way, is an important problem that has
gathered much attention. The matrices considered here are rectangular m-by-n.
Without loss of generality, we consider m > n. We call GE2VAL the problem
of computing (only) the singular values of a matrix, and GESVD the problem
of computing the singular values and the associated singular vectors.

From full to bidiagonal form. There are few algorithms to compute
the singular value decomposition. A large class of these algorithms consists in
first reducing the matrix to bidiagonal form with orthogonal transformations
(GE2BD step), then processing the bidiagonal matrix to obtain the sought sin-
gular values (BD2VAL step). These two steps (GE2BD and BD2VAL) are very
different in nature. GE2BD can be done in a known number of operations and
has no numerical difficulties. On the other hand, BD2VAL requires the conver-
gence of an iterative process and is prone to numerical difficulties. This paper
mostly focuses on GE2BD: reduction from full to bidiagonal form. Clearly,
GE2BD+BD2VAL solves GE2VAL: computing (only) the singular value of a
matrix. If the singular vectors are desired (GESVD), one can also compute
them by accumulating the “backward” transformations; in this example, this
would consist in a VAL2BD step followed by a BD2GE step.

In 1965, Golub and Kahan [19] provides a singular value solver based on an
initial reduction to bidiagonal form. In [19, Th. 1], the GE2BD step is done
using a QR step on the first column, then an LQ step on the first row, then a
QR step on the second column, etc. The steps are done one column at a time
using Householder transformation. This algorithm is implemented as a Level-2
BLAS algorithm in LAPACK as xGEBD2. For an m-by-n matrix, the cost of

this algorithm is (approximately) 4mn? — 4n®.

Level 3 BLAS for GE2BD. In 1989, Dongarra, Sorensen and Hammar-
ling [15] explains how to incorporate Level-3 BLAS in LAPACK xGEBD2. The
idea is to compute few Householder transformations in advance, and then to ac-
cumulate and apply them in block using the WY transform [3]. This algorithm
is available in LAPACK (using the compact WY transform [36]) as xGEBRD.
Grofler and Lang [21, Table 1] explain that this algorithm performs (approxi-
mately) 50% of flops in Level 2 BLAS (computing and accumulating Householder
vectors) and 50% in Level 3 BLAS (applying Householder vectors). In 1995,
Choi, Dongarra and Walker [12] presents the SCALAPACK version, PxGEBRD,
of the LAPACK xGEBRD algorithm of [15].

RR n° 8969



6 Mathieu Faverge, Julien Langou, Yves Robert, Jack Dongarra

Multi-step approach. Further improvements for GE2BD (detailed there-
after) are possible. These improvements rely on combining multiple steps. These
multi-step methods will perform in general much better for GE2VAL (when only
singular values are sought) than for GESVD (when singular values and singu-
lar vectors are sought). When singular values and singular vectors are sought,
all the “multi” steps have to be performed in “reverse” on the singular vectors
adding a non-negligible overhead to the singular vector computation.

Preprocessing the bidiagonalization with a QR factorization (preQR
step). In 1982, Chan [11] explains that, for tall-and-skinny matrices, in order to
perform less flops, one can pre-process the bidiagonalization step (GE2BD) with
a QR factorization. In other words, Chan propose to do preQR(m,n)+GE2BD(n,n)
instead of GE2BD(m,n). A curiosity of this algorithm is that it introduces
nonzeros where zeros were previously introduced; yet, there is a gain in term of
flops. Chan proves that the crossover points when preQR(m,n)+GE2BD(n,n)
performs less flops than GE2BD(m,n) is when m is greater than %n Chan also
proved that, asymptotically, preQR(m,n)+GE2BD(n,n) will perform half the
flops than GE2BD(m,n) for a fixed n and m going to infinity. If the singular
vectors are sought, preQR has more overhead: (1) the crossover point is moved
to more tall-and-skinny matrices, and there is less gain; also (2) there is some
complication as far as storage goes.

The preQR step was somewhat known by the community and an earlier
reference is for example the book of Lawson and Hanson 1974 [30]. For this
reason, the fact of pre-processing the bidiagonalization by a QR factorization
(preQR) is referred to as the LHC (Lawson, Hanson and Chan) algorithm in [37].

Three-step approach: partial GE2BD+preQR+GE2BD. In 1997, Tre-
fethen and Bau [37] present a “three-step” approach. The idea is to first start
a bidiagonalization; then whenever the ratio 7 passes the g mark, switch to a

QR factorization; and then finish up with GE2BD.

Two-step approach: GE2BND+BND2BD. In 1999, Grofier and Lang [21]
studied a two-step approach for GE2BD: (1) go from full to band (GE2BND),
(2) then go from band to bidiagonal (BND2BD). In this scenario, GE2BND has
most of the flops and performs using Level-3 BLAS kernels; BND2BD is not us-
ing Level-3 BLAS but it executes much less flops and operates on a smaller data
footprint that might fit better in cache. There is a trade-off for the bandwidth
to be chosen. If the bandwidth is too small, then the first step (GE2BND) will
have the same issues as GE2BD. If the bandwidth is too large, then the second
step BND2BD will have many flops and dominates the run time.

As mentioned earlier, when the singular vectors are sought (GESVD), the
overhead of the method in term of flops is quite large. In 2013, Haidar, Kurzak,
and Luszczek [24] reported that despite the extra flops a two-step approach
leads to speedup even when singular vectors are sought (GESVD).

Inria
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Tiled Algorithms for the SVD. In the context of massive parallelism,
and of reducing data movement, many dense linear algebra algorithms have been
moved to so-called “tiled algorithms”. In the tiled algorithm framework, algo-
rithms operates on tiles of the matrix, and tasks are scheduled thanks to a run-
time. In the context of the SVD, tiled algorithms naturally leads to band bidiag-
onal form. In 2010, Ltaief, Kurzak and Dongarra [31] present a tiled algorithm
for GE2BND (to go from full to band bidiagonal form). In 2013 (technical report
in 2011), Ltaief, Luszczek, Dongarra [33] add the second step (BND2BD) and
present a tiled algorithm for GE2VAL using GE2BND+BND2BD+BD2VAL.
In 2012, Ltaief, Luszczek, and Dongarra [32] improve the algorithm for tall and
skinny matrices by using “any” tree instead of flat trees in the QR steps. In
2012, Haidar, Ltaief, Luszczek and Dongarra [25] improve the BND2BD step
of [33]. Finally, in 2013, Haidar, Kurzak, and Luszczek [24] consider the prob-
lem of computing singular vectors (GESVD) by performing

GE2BND+BND2BD+BD2VAL+VAL2BD+BD2BND+BND2GE.
They show that the two-step approach (from full to band, then band to bidiag-
onal) can be successfully used not only for computing singular values, but also
for computing singular vectors.

BND2BD step. The algorithm in LAPACK for BND2BD is xGBBRD.
In 1996, Lang [28] improved the sequential version of the algorithm and devel-
oped a parallel distributed algorithm. Recently, PLASMA released an efficient
multi-threaded implementation [25,33]. We also note that Rajamanickam [35]
recently worked on this step.

BD2VAL step. Much research has been done and is done on this kernel.
Much software exists. In LAPACK, to compute the singular values and op-
tionally the singular vectors of a bidiagonal matrix, the routine xBDSQR uses
the Golub-Kahan QR algorithm [19]; the routine xBDSDC uses the divide-and-
conquer algorithm [22]; and the routine xBDSVX uses bisection and inverse it-
eration algorithm. Recent research was trying to apply the MRRR (Multiple
Relatively Robust Representations) method [39] to the problem.

BND2BD+BD2VAL steps in this paper. This paper does not focus
neither on BND2BD nor BD2VAL. As far as we are concerned, we can use any
of the methods mentioned above. The faster these two steps are, the better
for us. For this study, during the experimental section, for BND2BD, we use
the PLASMA multi-threaded implementation [25,33] and, for BD2VAL, we use
LAPACK xBDSQR.

Intel MKL. We note that, since 2014 and Intel MKL 11.2, the Intel MKL
library is much faster to compute GESVD [38]. Much of the literature on
tiled bidiagonalization algorithm was before 2014, and so it was comparing to
much slower version of MKL that is now available. The reported speedup in
this manuscript for the tiled algorithms over MKL, are therefore much less
impressive than previously reported.

RR n° 8969



8 Mathieu Faverge, Julien Langou, Yves Robert, Jack Dongarra

We also note that, while there was a great performance improvement for
computing GESVD [38] from Intel MKL 11.1 to Intel MKL 11.2, there was no
performance improvement for GEBRD. The reason is that the interface for GE-
BRD prevents a two-step approach, while the interface of GESVD allows for a
two-step approach. Similarly, our two-step algorithm does not have the same in-
terface as LAPACK GEBRD. Consequently, it would not be fair to compare our
algorithm with LAPACK GEBRD or Intel MKL GEBRD because our algorithm
does not have a native LAPACK GEBRD interface. (I.e., it will not produce the
Householder vector column by column as requested by the LAPACK interface.)
For this reason, we will always compare with GESVD, and not GEBRD.

Approach to compute the SVD without going by bidiagonal form.
We note that going to bidiagonal form is not a necessary step to compute the
singular value decomposition of a matrix. There are approaches to compute
the SVD of a matrix which avoid the reduction to bidiagonal form. In the
“direct method” category, we can quote Jacobi SVD [16,17], QDWHSVD [34];
one can also think to think the singular value decomposition directly from the
block bidiagonal form although not much work has been done in this direc-
tion so far. Also, we can also refer to all “iterative methods” for computing
the singular values. The goal of these iterative methods is in general to com-
pute a few singular triplets. As far as software packages, we can quote SVD-
PACK [2], PROPACK [29], and PRIMME SVD [40]. As far methods, we can
quote [26,27,41].

Connection with Symmetric Eigenvalue Problem. Many ideas (but
not all) can be applied (and have been applied) to symmetric tridiagonalization.
This paper only focuses on bidiagonalization algorithm but we believe that
some of the tricks we show (but not all) could be used for creating an efficient
symmetric tridiagonalization.

3 Tiled Bidiagonalization Algorithms

In this section, we provide background on tiled algorithms for QR factorization,
and then explain how to use them for the BID1AG and R-BI1D1AG algorithms.

3.1 Tiled algorithms

Tiled algorithms are expressed in terms of tile operations rather than elementary
operations. Each tile is of size ny X ny, where ny is a parameter tuned to squeeze
the most out of arithmetic units and memory hierarchy. Typically, n, ranges
from 80 to 200 on state-of-the-art machines [1].

Consider a rectangular tiled matrix A of size p x ¢q. The actual size of A
is thus (pny) X (gny), where n; is the tile size. We number rows from 1 to p,
columns from 1 to ¢, and factorization steps from k =1 to k = ¢q. Algorithm 1
outlines a tiled QR algorithm, where loop indices represent tiles:

Inria
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Algorithm 1: QR(p, q) algorithm for a tiled matrix of size (p, q).

for k =1 to min(p, q) do
Step k, denoted as QR(k):
fori=k+1 topdo
| elim(i,piv(i, k), k)

Operation Panel Update
Name Cost Name Cost
Factor square into triangle GEQRT 4 UNMQR 6

Zero square with triangle on top TSQRT 6 TSMQR 12
Zero triangle with triangle on top || TTQRT 2 TTMQR 6

Table 1: Kernels for tiled QR. The unit of time is %ﬁ, where ny, is the blocksize.

In Algorithm 1, k is the step, and also the panel index, and elim (i, piv(i, k), k)
is an orthogonal transformation that combines rows i and piv(i, k) to zero out
the tile in position (4, k). We explain below how such orthogonal transformations
can be implemented.

3.2 Kernels

To implement a given orthogonal transformation elim(i, piv(i, k), k), one can
use six different kernels, whose costs are given in Table 1. In this table, the unit
of time is the time to perform %2 floating-point operations.

There are two main possibilities to implement an orthogonal transformation
elim(i, piv(i, k), k): The first version eliminates tile (i, k) with the TS (Triangle
on top of square) kernels, as shown in Algorithm 2:

Algorithm 2: Elimination elim (i, piv(i, k), k) via TS (Triangle on top of
square) kernels.
GEQRT (piv(i, k), k)
TSQRT (i, piv(i, k), k)
forj=k+1 toqdo
UNMQR(piv(i, k), k, j)
L TSMQR(i, piv(i, k), k, j)

Here the tile panel (piv(i, k), k) is factored into a triangle (with GEQRT).
The transformation is applied to subsequent tiles (piv(i, k),j), 7 > k, in row
piv(i, k) (with UNMQR). Tile (i, k) is zeroed out (with TSQRT), and subse-
quent tiles (z,7), j > k, in row ¢ are updated (with TSMQR). The flop count
is4d+64 (6+12)(¢ — k) = 10+ 18(q — k) (expressed in same time unit as in
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10 Mathieu Faverge, Julien Langou, Yves Robert, Jack Dongarra

Table 1). Dependencies are the following:

GEQRT (piv(i, k), k) < TSQRT (i, piv(i, k), k)

GEQRT (piv(i, k), k) < UNMQR(piv(i, k), ,]) for j > k
UNMQR(piv(i, k), k,j) < TSMQR(i,piv(i, k), k,5) for j >k
TSQRT (i, piv(i, k), k) < TSMQR(i, piv(i, k), k, ) for j > k

TSQRT (i, piv(i, k), k) and UNMQR(piv(i,k),k,j) can be executed in paral-
lel, as well as UNMQR operations on different columns 7,5 > k. With an
unbounded number of processors, the parallel time is thus 4 + 6 + 12 = 22
time-units.

Algorithm 3: Elimination elim(i, piv(i, k), k) via TT (Triangle on top of
triangle) kernels.
GEQRT (piv(i, k), k)
GEQRT (i, k)
forj=k+1 toqdo
UNMQR(piv(i, k), k, j)
L UNMQR(i, k,j)
TTQRT (i, piv(i, k), k)
forj=k+1 to q do
| TTMQR(i, piv(i, k), k, )

The second approach to implement the orthogonal transformation elim (i, piv(i, k), k)

is with the TT (Triangle on top of triangle) kernels, as shown in Algorithm 3.
Here both tiles (piv(i, k), k) and (4, k) are factored into a triangle (with GEQRT).
The corresponding transformations are applied to subsequent tiles (piv(i, k), 5)
and (4,7), 7 > k, in both rows piv(i, k) and ¢ (with UNMQR). Tile (i, k) is ze-
roed out (with TTQRT), and subsequent tiles (¢, §), j > k, in row 4 are updated
(with TTMQR). The flop count is 2(4+6(q—k))+2+6(¢—k) = 10+18(¢ — k),
just as before. Dependencies are the following:

GEQRT (piv(i, k), k) < UNMQR(piv(i, k), k, j) for j > k
GEQRT (i, k) < UNMQR(’L k,j) for j > k
GEQRT (piv(i, k), k) < TTQRT (i, piv(i, k), k)

GEQRT (i, k)

< TTQRT (i, piv(i, k), k)

TTQRT (i,piv(i, k), k) < TTMQR(i, piv(i, k), k,j)  for j >k
UNMQR(piv(i k), k,j) < TTMQR(i,piv(i, k), k,j) for j >k
UNMQR(i, k, ) < TTMQR(i, piv(i, k), k, 5) for j > k

Now the factor operations in row piv(i, k) and ¢ can be executed in parallel.
Moreover, the UNMQ@R updates can be run in parallel with the TTQRT fac-
torization. Thus, with an unbounded number of processors, the parallel time is
446+ 6 = 16 time-units.

In Algorithms 2 and 3, it is understood that if a tile is already in triangle
form, then the associated GEQRT and update kernels do not need to be applied.

Inria
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3.3 QR factorization

Consider a rectangular tiled matrix A of size p x ¢, with p > ¢. There are
many algorithms to compute the QR factorization of A, and we refer to [8] for
a survey. We use the three following variants:

FlatTS This simple algorithm is the reference algorithm used in [9,10]. At
step k, the pivot row is always row k, and we perform the eliminations
elim(i, k, k) in sequence, for i = k+ 1, ¢ = k 4+ 2 down to ¢ = p. In this
algorithm, T'S kernels are used.

FlatTT This algorithm is the counterpart of the FLATTS algorithm with 77T
kernels. It uses exactly the same elimination operations, but with different
kernels.

Greedy This algorithm is asymptotically optimal, and turns out to be the
most efficient on a variety of platforms [7,14]. An optimal algorithm is
GRASAP [7,14]. The difference between GRASAP and GREEDY is a small
constant term. We work with GREEDY in this paper. The main idea is to
eliminate many tiles in parallel at each step, using a reduction tree (see [8]
for a detailed description).

QRr(1) La() QR(2)

Figure 1: Snapshots of the bidiagonalization algorithm BiDIAG.

3.4 Bidiagonalization

Consider a rectangular tiled matrix A of size p X ¢, with p > ¢q. The bidiagonal-
ization algorithm BIDIAG proceeds as the QR factorization, but interleaves one
step of LQ factorization between two steps of QR factorization (see Figure 1).
More precisely, BIDIAG executes the sequence

QR(1); LQ(1); QR(2);...; QR(q — 1); LQ(q — 1); QR(q)

RR n°® 8969



12 Mathieu Faverge, Julien Langou, Yves Robert, Jack Dongarra

Algorithm 4: Step LQ(k) for a tiled matrix of size p X q.
Step k, denoted as LQ(k):
forj=k+1 toqdo
| col-elim(j, piv(j, k), k)

where QR(k) is the step k of the QR algorithm (see Algorithm 1), and LQ(k)
is the step k of the L@ algorithm. The latter is a right factorization step that
executes the column-oriented eliminations shown in Algorithm 4.

In Algorithm 4, col-elim(j, piv(k, j), k) is an orthogonal transformation that
combines columns j and piv(k,j) to zero out the tile in position (k,j). It is
the exact counterpart to the row-oriented eliminations elim(i, piv(i, k), k) and
be implemented with the very same kernels, either TS or TT.

3.5 R-Bidiagonalization

When p is much larger than g, R-bidiagonalization should be preferred, if min-
imizing the operation count is the objective. This R-BIDIAG algorithm does a
QR factorization of A, followed by a bidiagonalization of the upper square ¢ X ¢
matrix. In other words, given a rectangular tiled matrix A of size p X ¢, with
p > q, R-BIDIAG executes the sequence

QR(p,q); LQ(1); QR(2);...;QR(q — 1); LQ(q — 1); QR(q)

Let m = pn, and n = gn;, be the actual size of A (element wise). The
number of arithmetic operations is 4n*(m — %) for BIDIAG and 2n*(m + n)
for R-BID1AG [20, p.284]. These numbers show that R-BIDIAG is less costly
than BIDIAG whenever m > %", or equivalently, whenever p > 53—‘1. One major
contribution of this paper is to provide a comparison of BIDIAG and R-BiDIAG
in terms of parallel execution time, instead of operation count.

3.6 Comments

Case m < n. The paper focuses on the m > n case but everything holds in
the m < n case. One simply can transpose the initial matrix and change switch
LQ steps for QR steps and vice versa.

Real/Complex arithmetic. There is no restriction of our work on whether
the matrices are real or complex. Actually, our codes have been generated to
allow for both real and complex arithmetics, single and double precisions.

Memory usage of our algorithm. In the standard LAPACK case, GEBRD
takes as input a matrix and overrides the matrix with the Householder reflectors
and the bidiagonal matrix. The algorithm is therefore down in place and there
is no extra storage needed. In the case R-BIDIAG, it is important to note that
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as in the case of the LHC algorithm [11], an extra storage of size n?/2 is needed
if one wants to recompute the singular vectors. (If one wants the singular value,
all that matters is the bidiagonal form and any Householder vectors generated
can safely be discarded.)

Any tree is possible. We note that whether we choose to perform BiDIAG
or R-BIDIAG, any tree is possible at each step of the algorithm. For example
a restriction of our study thereafter is to fix the trees in the QR step and the
BID1AG step of R-BIDIAG to be the same. Clearly there is no such need, and
one can consider for R-BIDIAG (for example) a combination like (QRFLATTS
+BIDIAGGREEDY). We do not study such combinations. This also simplifies
notations. Since we consider the same tree for the QR step and the BiDiAG
step of R-BIDIAG, when we write R-BIDIAGFLATTT (for example), we mean
(QRFLATTT +4BIDIAGFLATTT).

BiDiagGreedy and BiDiagBinomial are the same. Another name for
BIiDIAGGREEDY would be BIDIAGBINOMIAL. Since in the BiD1AG algorithm,
we repeat the same tree (in the GREEDY case, a BINOMIAL tree) over and over
again. So BIDIAGGREEDY and BIDIAGBINOMIAL are the exact same algorithm.
(Whereas QRGREEDY is not the same as QRBINOMIALL.)

4 Critical paths

In this section, we compute exact or estimated values of the critical paths of the
BiD1AG and R-BIDIAG algorithms with the FLATTS, FLATTT, and GREEDY
trees.

4.1 Bidiagonalization

Given a rectangular tiled matrix A of size px ¢, with p > ¢, the bidiagonalization
algorithm BIDIAG executes the sequence

QR(1); LQ(1); QR(2);...;QR(q — 1); LQ(q — 1); QR(q)

To compute the critical path, we first observe that there is no overlap between
two consecutive steps QR(k) and LQ(k). To see why, consider w.l.o.g. the
first two steps QR(1) and LQ(1) on Figure 1. Tile (1,2) is used at the end
of the QR(1) step to update the last row of the trailing matrix (whichever it
is). In passing, note that all columns in this last row are updated in parallel,
because we assume unlimited resources when computing critical paths. But tile
(1,2) it is the first tile modified by the LQ(1) step, hence there is no possible
overlap. Similarly, there is no overlap between two consecutive steps LQ(k) and
QR(k + 1). Consider steps LQ(1) and QR(2) on Figure 1. Tile (2,2) is used
at the end of the LQ(1) step to update the last column of the trailing matrix
(whichever it is), and it is the first tile modified by the QR(1) step.
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As a consequence, the critical path length of BIDIAG is the sum of the criti-
cal path lengths of each QR and LQ step. And so an optimal BiD1AG algorithm
is an algorithm which is optimal at each QR and LQ step independently. We
know that an optimal QR step is obtained by a binomial tree. We know that
an optimal LQ step is obtained by a binomial tree. Therefore the scheme alter-
nating binomial QR and LQ trees, that is BIDIAGGREEDY, is optimal. This is
repeated in the following theorem.

Theorem 1. BiIDIAGGREEDY is optimal, in the sense that it has the shortest
critical path length, over all BIDIAG algorithms, which are tiled algorithms that
alternate a QR step and an LQ step to obtain a band bidiagonal matriz with a
sequence of any QR trees and any LQ) trees.

We now compute critical path lengths. From [7,8,14] we have the following
values for the critical path of one QR step applied to a tiled matrix of size (u,v):

FlatTS

QR*FTslstep(w):{ 44+6(u—-1) ifv=1,

4+4+6+12(u—1) otherwise.

FlatTT

QR — FTTyu1p(u,v) = { 44+2(u—-1) ifv=1,

446+ 6(u—1) otherwise.

Greedy
QR — GRE1ypep (1, ) — { 4+ 2[logy(u)] ifv=1,

446+ 6[logy(u)] otherwise.

The critical path of one LQ step applied to a tiled matrix of size (u,v) is
LQ1step(u,v) = QRistep(v, w). Finally, in the BIDIAG algorithm, the size of the
matrix for step QR(k) is (p—k+1,q— k+1) and the size of the matrix for step
LQ(k)is (p—k+1,qg — k). Altogether, we derive the following values:

FlatTS
q—1 q—1
BIDIAGFLATTS(p,q) = > (10+12(p—k))+ > _(10+12(g—k — 1))+ (4 +6(p — q))
k=1 k=1
= 12pq—6p+2q—4
FlatTT
q—1 q—1
BIDIAGFLATTT(p, q) D> (10+6(p— k) + Y (10+6(q—k—1)) + (4+2(p — q))
k=1 k=1

= 6pqg—4p+ 12¢ — 10

We devote the whole next subsection to the study of the critical path of
BiDIAGGREEDY(p, q), because this is more complicated.
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4.2 Study of the critical path of BiDiagGreedy(p, q)
4.2.1 A formula with a summation
By following the reasoning of the previous subsection, we get

Greedy

BI1DIAGGREEDY(p, q)
= Y121 (10 + 6[logy (p + 1 — k)1) + 072, (10 + 6[logs (g — k)1) + (4 + 2[logy(p + 1 — q)]
=630 sollogy (k)] + 63 {1 [log, (k)] + 20g + 2[logy(p + 1 — q)] — 16

=630 [logy (k)] — 6 S0 -9 [log,y (k)] + 6 S°7_ ! [logy (k)] + 20g +(2 )ﬂogQ@ +1-¢q)]—16
1

The latter formula is exact and is easy enough to compute with a small
computer code. However it does not provide us with much insight. To get a
better grasp on BIDIAGGREEDY(p, ¢), we develop some more Equation (1).

4.2.2 An exact formula when p and ¢ are powers of two

First we note that:

Let r be a power of 2 :
D logy(k)] = 1424243434343 +4+4+4+4+4+4+4+4+5...
k=1

= rlogy(r)—r+1 (2)

One way to understand the previous relation is to remember that “the” antider-
ative of log(x) is zlog(x) — x. The previous relation reminds us of this result.
The general case (r is not a power of 2) of Equation (2) is

s

Let r be an integer, Y _[log, (k)] = (|logy(r)] — 1) 2U°gz<r>J+1+(r - 2U°gz<r>J) Mog,(r)]

k=1
(3)
From Equations (1) and (2), we derive that if ¢ is a power of two:

Let g be a power of 2, BIDIAGGREEDY(q, q) = 12qlog,(q) + 8¢ —6log,(q) —4

From Equations (1), (2) and (3), we derive that, if both p and ¢ are powers of
two, with p > ¢:
Let p and ¢ be powers of 2 :

with p > ¢, BIDIAGGREEDY(p, q) = 6qlog,(p)+6qlog,(q)+14g—4log,(p)—61logs(q)—10.

Theorem 2. Let p and q be powers of 2,

Ifp=gq, BIDIAGGREEDY(q, q) = 12qlog,(q) + 8q — 6log,y(q) — 4,
Else if p > q, Bi1DIAGGREEDY(p, q) = 6qlog,(p) + 6¢log,(q) + 14g — 41log,(p) — 6log,(g) — 10.
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4.2.3 Using Stirling’s formula

We can also consider Equation (1) again and obtain simpler bounds by rounding
down and up the ceiling function in the logarithms and then using asymptotic
analysis. We consider the bounds:

Let k be an integer, logy(k) < [log, (k)] < logy(k) + 1.
Applied to Equation (1), this leads to

6logs(p!) — 6logy((p— g+ 1)!) 4+ 6logs((g — 1)) + 209 + 2logy(p+ 1 —q) — 16
< BIDIAGGREEDY(p, q) <
6log,(p!) — 6logs((p— g+ 1)) + 6logy((g — 1)) + 32¢ + 2logy(p + 1 — q) — 26.

We note that the difference between the lower bound (left side) and the

upper bound (right side) is 12¢g — 10.
We now consider “large” p and ¢, and we use Stirling’s formula as follows:

log(p!) = plog(p) —p+ O (logp) .

And with one more term we get:
1 1
log(p!) = plog(p) —p + 5 log(2mp) + O )

In base 2,

log, (p!) = plog,(p) — logy(e)p + % log,(p) + log, (V27) + 1022(9@) +0 <> :

We obtain that

6plogy(p) — 6(p — q) logy(p — g + 1) + 6qlogy(q — 1) [x.log, @ terms]
+(20 — 121logy(e))(q) [linear terms]
[
[

+3logy(p) — 3logy(q—1) — Tloga(p — g+ 1) log, linear terms]
—|—6 log, (v/27) —|— 12 1og2(e) —16
+5logy(e)} + 3 logy(e) o1y — 5 loga(e) ooy

)
(max( T ))

constant terms]

< BIDIAGGREEDY (p, q¢) <

6plogs(p) — 6(p — q) logy(p — g + 1) + 6gqlogy(g — 1) [z.logy  terms]
+(32 — 121og,(e))(q) [linear terms]
+3log,(p) — 3logy(q— 1) — Tlogy(p — g+ 1) [log, linear terms]
—|—6 10g2(\/27) + 12log, (e) - 26 [constant terms]

% 10g2( ) 10%2( )pﬂlﬁl
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We stop the expansion a little earlier.

6plogy(p) — 6(p — g) logy(p — g+ 1) + 6glogy (g — 1) [ logy = terms]
+(20 — 121log,(e))(q) [linear terms]
+3log,(p) — 3logy(q — 1) — Tlogy(p —q+ 1) [log, linear terms]
+0 (1)

< BIDIAGGREEDY (p, q) <

6plog,(p) — 6(p — q) logy(p — ¢ + 1) + 6qlogy(g — 1) [x.log, @ terms]
+(32 — 121logy(€))(q) [linear terms]
+3log,(p) — 3logy(q — 1) — Tlogy(p —q+ 1) [log, linear terms]
+0(1).

We now study the term: plog,(p) — (p — q) logs(p — g + 1), this gives:

plogy(p) — (p—q)loga(p —q+1) = qlogy(p) — (p — q)logy(1 — q;fl)-

We now study the term: (p — q)logy(1 — %). We can set p = q + aq with
a > 0. We get

- 0ors - ) =g (ator 2+ 1)),

We have that

« « 1
for ae > 0, logo(———) <logy(——— + —) <0.
T2 a g2(1—|—a)_ g2(1—|—a+p)_
We are therefore drawn to study for o > 0, alogy (7). We see that this is a
decreasing function of a. We are interested in the limit value when « goes to
oo. For large values of «, we have

o 1
alogQ(m) = a10g2(6)10g<11+a>,
1 1
= al 1 — O(—
alogy(e)log (~ 3=+ O(5)).

— log,(c)log (—Ho‘a + 0(;)> .

So that
. [e%
lim (Oé logQ(M)) = — IOgQ (6)

a—r—+o00

So all in all, we have that

for >0, —logy(e) < alogy( ]

And so .
—logs(e)q < (p— g) logs(1 — q7> <0.
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Thus

qlogy(p) < plogy(p) — (p — q) loga(p — g + 1) < qlogy(p) + logy(e)q.

So we get

6¢log,(p) + 6¢logy (g — 1) [x.logy = terms]
+(20 — 121og,(e))(q) [linear terms|
+3log,(p) — 3logy(q — 1) — Tlogy(p— g+ 1) [log, linear terms]
+0 (1)

< BIDIAGGREEDY(p, q) <

6qlog,(p) + 6¢qlogy (g — 1) [x.logy = terms]
+(32 — 6logy(e))(q) [linear terms] @
+3log,(p) — 3logy(q — 1) — Tlogy(p— g+ 1) [log, linear terms|
+0O(1).

We note that the difference between the lower bound (left side) and the
upper bound (right side) is (12 + 6log,(e))g — 10.
We now get the following theorem

Theorem 3.
BIDIAGGREEDY (p, q) = 6qlogy(p) + 6qlogy(q) + O (max(logy(p), q)) -

This theorem matches the power of 2 case. Also we understand that we
perform g QR steps that each are done with a binomial tree of length log,(p).
This explains the glog,(p) term; we perform ¢ LQ steps that each are done
with a binomial tree of length logs(q). This explains the glog,(g) term. The
coefficient 6 in front is due to the weights use for the kernels. This theorem
holds for any p and gq.

In the p = q case, we get that

BIDIAGGREEDY (¢, q) = 12¢qlog,(q) + O (q) .
In the p = B¢+ case, we get that
BIDIAGGREEDY (3¢ ™%, q) = (12 4 6a)qlog,(q) + O (q) .
We use Equation (4) and get

for ¢ constant, and p going to infinity,
BIDIAGGREEDY(p, q) = (6g — 4) log,(p) + O (1)

We note that this formula agrees with the case when p and ¢ are powers of

2. Also note that the O (1) includes qlog,(q) terms, ¢ terms, etc since ¢ is a
constant.
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4.2.4 An exact formula for all p and ¢

We conclude the subsection on the study of BIDIAGGREEDY(p,q) by giving
an exact formula. The first-order term in the exact formula is the same as in
Subsubsection 4.2.3 with asymptotic analysis. However one lower-order term is
harder to analyze. So we prefer to present this formula last. This is nevertheless
an exact formula for our problem so it has some merit in itself.

For the general case, (either p or ¢ is not a power of 2,) using Equa-
tions (1), (2) and (3), the expression gets more complicated: letting

ap = [logy(p)] —logy(p)

ar = [logo(p—q+1)] —logy(p—gq+1)
ag = [logy(q—1)] —logy(q —1);

Bp = ap—2% —ay +2%%;

By = g —2% 4+ ap —2%%;

we derive that

BIDIAGGREEDY(p, q)
= 6plogy(p) — 6(p — g+ 1)logy(p — g+ 1) +6(q — 1) logy(q — 1)
+20q + 68,p + 684(q — 1) + 2[logy(p + 1 — q)] — 10.

We see that we have a term in p. Namely 63,p. This is counter-intuitive
since we expect an expansion with the term plog,(p) — (p — ¢+ 1) logy(p — g +
1)+ (¢—1)logy(g—1) as we already have seen in Subsubsection 4.2.3, and then,
for the next terms after, we expect a term in ¢ and no term in p. The next term
in p should at most be a log,(p). The reason is that the term 653,p behaves has
a linear function of ¢. (Although this is not trivial to understand.)

If further analysis is sought from this formula, it is important to note that
Bp and B4, while being complicated functions of p and ¢, are bounded. Indeed,
since ayp, oy, and o, are between 0 and 1, we have that o — 2% is between
—(1+41loglog?2))/log2 and -1, (that is between: —0.9139 and —1,) and so

— (1= (1 +1log(log(2)))/10g(2)) < By <+ (1 = (1 +log(log(2)))/log(2))
—0.0861 < B, < +0.0861

and

—2
-2

P
Bq

—2((1 + log(log(2)))/ log(2))

<
< —1.8278

INIA

4.3 R-Bidiagonalization
4.3.1 Formula for tiled QR factorization using various trees

For a tiled matrix of size (p, ¢), R-BIDI1AG executes the sequence

QR(p,q); LQ(1); QR(2); .. .; QR(q — 1); LQ(q — 1); QR(q)
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From [7,8,14], we have the following critical paths for the QR factorization of
a tiled (p,q) matrix, which can be computed using the three variants described
in Section 3:

FlatTS
6p—2 ifq=1,
QR —FTS(p,q) = 30g—34 ifg=p,
12p + 18q — 32 otherwise.

FlatTT
2p+2 ifg=1,
QR—FIT(p,q) = 22 —24 ifg=p,
6p + 16g — 22 otherwise.

For QR — GRE we have no closed-form formula. By combining [7, Theorem
3.5] with [13, Theorem 3] we derive that

QR — GRE(p,q) =229+ o(q)

whenever p = o(q?), which includes the case where p = B¢***, with 0 < a < 1.

4.3.2 Critical path length of R-BiDiag with various trees

Computing the critical path of R-BIDIAG is more difficult than for BiDiAG,
because kernels partly overlap. For example, there is no need to wait for the
end of the (left) QR factorization to start the first (right) factorization step
LQ(1). In fact, this step can start as soon as the first step QR(1) is over
because the first row of the matrix is no longer used throughout the whole QR
factorization at this point. However, the interleaving of the following kernels
gets quite intricate. For example we note that R-BIDIAGGREEDY(65,5) =
262 while R-BIDIAGGREEDY(66,5) = 260. So we factorize a larger matrix in
a shorter critical path. The reason is that, even though the critical path of
QR — GRE(66,5) is longer than the critical path of QR — GRE(65,5), the DAG
of QR — GRE(66,5) interleaves with the DAG of BIDIAG (5,5) more than the
DAG of QR — GRE(65,5) interleaves with the DAG of BiDiacG (5,5). There
are many such examples. For example R-BIDIAGGREEDY (134, 10) = 680 while
R-BIDIAGGREEDY(133,10) = 682; R-BIDIAGGREEDY(535,50) = 4946 while
R-BIDIAGGREEDY(534, 50) = 4948; etc.

Taking into account the interleaving, or not, does not change the higher-
order terms, in the following we simply sum up the values obtained without
overlap, adding the cost of the QR factorization of size (p,q) to that of the
bidiagonalization of the top square (g,q) matrix, and subtracting step QR(1)
as discussed above. In other words

R-BIDIAG(p, q) < QR(p, q) + BIDI1AG(q, q) — QRistep(q)-

This leads us to the following upper bounds:
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FlatTS
R-BIDIAGFLATTS(p, q) < (12p+18¢—32)+(12¢%> —4q—4) — (12¢—14) =
12¢% + 12p + 2q — 22

FlatTT
R-BIDIAGFLATTT(p, q) < (6p+ 16q — 22) + (6¢* +8q — 10) — (6¢ — 2) =
6¢> + 6p + 18¢ — 30

Greedy
R-BIDIAGGREEDY(p, q) < (22¢+0(q))+ (12qlog,(q)+ (20—121og,(e))g+
o(q)) — o(q) = 12qlog,(q) + (42 — 12logy(e))q + o(q) whenever p = o(¢?).

For the sake of completeness, here are the exact values (obtained using the
PARSEC programming tool, see Section 6) for the critical paths of R-BiD1aG
with the FLATTS and FLATTT variants:

6p — 2 ifg=1,
36 ifg=2and ¢ =p,
R-BIDIAGFLATTS(p,q) = ¢ 12p+4 if g =2 and q # p,

12¢> —16g+12p+4 if ¢g=3 and q = p,
12¢®> —16¢ + 12p + 6 otherwise.

2p +2 ifg=1,

30 if¢g=2and ¢ =p,

6p + 20 if ¢ =2 and ¢ # p,
R-BIDIAGFLATTT (p, ¢) = 6% + 18 — 36 if ¢ = 3 and g ip

6¢g> +12¢+6p — 34 if ¢g=3 and q # p,
6¢> +6g +6p — 16  otherwise.

In both cases, we check that the exact and approximate values differ by a factor
O(q) and have same higher-order term O(g?).

4.3.3 Comparison between BiDiagGreedy and R-BiDiagGreedy

Again, we are interested in the asymptotic analysis of R-BIDIAGGREEDY,
and in the comparison with BIDIAGGREEDY. In fact, when p = o(¢?), say
p = Bq*t®, with 0 < a < 1, the cost of the QR factorization QR(p, q) is negli-
gible in front of the cost of the bidiagonalization BIDIAGGREEDY(q, ¢), so that
R-BIDIAGGREEDY(p, ¢) is asymptotically equivalent to BIDIAGGREEDY(q, q),
and we derive that:

, BIDIAGGREEDY (B¢!T?, q) «
f < 1, 1 =14 =
ordsa<l el R-BIDIAGGREEDY (B¢t q) *3 (5)

Asymptotically, BIDIAGGREEDY is at least as costly (with equality is p and ¢
are proportional) and at most 1.5 times as costly as R-BIDIAGGREEDY (the
maximum ratio being reached when a = 1 — ¢ for small values of ¢.

Just as before, R-BIDIAGGREEDY is asymptotically optimal among all pos-
sible reduction trees, and we have proven the following result, where for notation
convenience we let BIDIAG(p, ¢) and R-BIDIAG(p, ¢) denote the optimal critical
path lengths of the algorithms:
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Theorem 4. For p = B¢'**, with 0 < o < 1:

BiD1AG(p, q)

lim =1
a—o0 (12 + 6a)glog,(q)
B1D
lim DIDAGRD) o
q—o0 R-BIDIAG(p, q) 2

When p and ¢ are proportional (o« = 0, § > 1), both algorithms have same
asymptotic cost 12gloga(g). On the contrary, for very elongated matrices with
fixed ¢ > 2, the ratio of the critical path lengths of BIDIAG and R-BIDIAG gets
high asymptotically: the cost of the QR factorization is equivalent to 6log,(p)
and that of BIDIAG(p,q) to 6¢log,(p). Since the cost of BIDi1aG(q,q) is a
constant for fixed ¢, we get a ratio of ¢q. Finally, to give a more practical
insight, Figure 2 reports the ratio of the critical paths of all schemes over that
of BID1AG with FLATTS. We observe the superiority of R-B1DIAG for tall and
skinny matrices.

4.3.4 Switching from BiDiag and R-BiDiag

For square matrices, BIDIAG is better than R-BiD1AG. For tall and skinny
matrices, this is the opposite. For a given ¢, what is the ratio 6 = p/q for
which we should switch between BIDIAG and R-BI1DIAG? Let d5 denote this
crossover ratio. The question was answered by Chan [11] when considering
the operation count. The question has multiple facets. The optimal switching
point is not the same whether one wants singular values only, right singular
vectors, left, or both (left and right). Chan [11] answers all these facets. For
example, Chan [11] shows that the optimal switching point between BIDIAG and
R-BID1AG when singular values only are sought is § = % Here, we consider a
similar question but when critical path length (instead of number of flops) is the
objective function. Since BIDIAGGREEDY is optimal and R-BIDIAGGREEDY is
asymptotically optimal, we only focus on these two algorithms. It turns out
that d, is a complicated function of ¢. The function of d5(q) oscillates between 5
and 8 (see Figure 3b) To find s, we coded snippets that explicitly compute the
critical path lengths for given p and ¢, and find the intersection for a given q. See
Figure 3 for an example with ¢ = 100. We see that, in this case, 5(100) = 5.67.

4.4 Critical path length study

In Figures 2a, 2b and 2c, we present the critical path length speedup taking
for base BIDIAGFLATTS. The higher the better. We see that the GREEDY
base BIDIAG and R-BIDIAG algorithms (green curves) are much better any
other trees as expected by the theory. In the square case, we do not present
R-BIDIAG (since there is no interest in R-BIDIAG in the square case).

We set the dimension of the problem p and ¢ so as to reproduce the dimension
in our experimental section. In the experimental section, we will use a tile size
of 160. Figure 2a studies the square case, it is the same condition as Figure 5a.
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Figure 3: Switching between BIDIAG and R-BIDIAG.

Figure 2c studies the rectangular case when n = 2,000, so when ¢ = 13, it is
the same condition as Figure 5b. Figure 2c studies the rectangular case when
n = 10,000, so when ¢ = 63, it is the same condition as Figure 5c.

From Figure 2a, we see that the critical path of BIDIAGGREEDY for a square
40x40 tile matrix is more than 6 times shorter than for BIDIAGFLATTS.

From Figure 2b, we see that the critical path of BIDIAGGREEDY and R-
BIDIAGGREEDY for a square 400x13 tile matrix is more than 60 times shorter
than for BIDIAGFLATTS. We also the crossover point between BIDIAGGREEDY
and R-BIDIAGGREEDY. For “very tall and skinny” matrix (p > ¢), R-BIDIAGGREEDY
is better than BIDIAGGREEDY. For “not-too tall and skinny” matrix (p =~ q),
BiDI1AGGREEDY is better than R-BIDIAGGREEDY.

4.5 Comments

When singular vectors are requested. It is important to understand that
the optimality in Theorem 1 assumes that we do not request singular vectors.
The whole analysis is significantly changed if one requests singular vectors. In
this paper, we explain that, since there is no overlap between QR and LQ steps,
then the shortest trees at each step makes up an optimal algorithm. When we
apply the trees in reverse to obtain the singular vectors, then we apply all the
LQ steps in sequence (without the QR steps) to obtain W, and we apply all
the QR steps in sequence (without the LQ steps) to obtain U. In this case, we
can clearly pipeline the trees as in a regular QR factorization. It is therefore
interesting to use a “full” greedy tree or even a standard FLATTT tree where
a pipeline happens. The BIDIAGGREEDY algorithm becomes less interesting.
This paper focuses only on the bidiagonal phase. This means in some sense
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that we are interested in the singular value problem where we only request
the singular values, we do not request the singular vectors. Another study
should be done when the singular vectors are requested. However, we believe
that, despite the absence of pipeline in the construction of the singular vectors
phase, BIDIAGGREEDY is still an algorithm of choice since the overhead in the
construction is of order log, p while the overhead of the other algorithms in the
bidiagonalization is of order p.

Three-step algorithm: partial GE2BD+preQR+GE2BD. In 1997, Tre-
fethen and Bau [37] present a “three-step” approach. The idea is that having a
cut-off when to switch from BIDIAG to R-BIDIAG algorithm seems unnatural
and leads to a continuous but not smooth function. Smooth is better and seems
more natural. So instead of doing either R-BIDI1AG or BID1AG, we consider the
following algorithm. We start with BIDIAG until the matrix is tall and skinny
enough. (We note that BIDIAG makes the matrix more and more tall and
skinny.) Once the matrix is tall and skinny enough, we switch to R-BIDIAG.
Trefethen and Bau [37] studied the “three-step” approach where they want to
minimize the number of flops. Here we experimentally study their “three-step”
approach when we want to minimize the critical path length. We do not have
an exact formula to know when to stop the first bidiagonalization. Therefore,
for a first study, we consider the brute force approach and consider all possible
stops for the first bidiagonalization, and then we take the one stop that gives
the shortest critical path length. In fine, we obtain for example a figure like
Figure 4.

We fix ¢ = 30 and consider p varying from 30 to 400. We see that three-step
algorithm (black curve) is always the best. (This is expected because we consider
all possibilities including BIDIAG and R-BIDI1AG, and take the minimum over
all possibilities. So clearly, three-step will always be better than BiDIAG and R-
BIDIAG.) Initially three-step is the same as BID1AG. Then, in the middle region
p = 60 to 260, we see that three-step is better than both BiD1AG and R-BIDIAG.
This is when indeed we do not perform BiDIAG, we do not perform R-BIDIAG,
we perform a “true” three-step algorithm where we start a bidiagonalization
algorithm, then stop the bidiagonalization, switch to a QR factorization of the
remaining submatrix, and finish with a bidiagonalization. Finally after p = 260,
three-step is same as R-BIDIAG.

Once more, the idea behind three-step is that: (1) R-BIDIAG is better for
tall-and-skinny matrices; (2) the BIDIAG process makes the trailing submatrix
more and more tall-and-skinny. So the idea is to start BIDIAG until the matrix
is tall-and-skinny enough and switch to R-BIDIAG. If we consider the minimum
of BIDIAG (blue curve) and R-BIDIAG (red curve) then we have a non-smooth
function. This is not natural. When we consider the three-step algorithm (black
curve), we have a nice smooth function. This is more natural.

We see that three-step is better than BIDIAG and R-BiDi1aG. However when
we look at the gain (y-axis), we do not have staggering gain. So, while three-step
is an interesting and elegant idea, we did not push its study further.
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Figure 4: BiD1AG, R-BiD1AG and three-step algorithm for ¢ = 30 and p varying
from 30 to 400.

5 Implementation

To evaluate experimentally the impact of the different reduction trees on the
performance of the GE2BND and GE2VAL algorithms, we have implemented
both the BID1AG and R-BIDIAG algorithms in the DPLASMA library [5],
which runs on top of the PARSEC runtime system [6]. PARSEC is a high-
performance fully-distributed scheduling environment for generic data-flow al-
gorithms. It takes as input a problem-size-independent, symbolic representation
of a Direct Acyclic Graph in which each node represents a tasks, and each edge
a dependency, or data movement, from one task to another. PARSEC schedules
those tasks on distributed parallel machine of multi-cores, potentially heteroge-
neous, while complying with the dependencies expressed by the programmer. At
runtime, tasks executions trigger data movements, and create new ready tasks,
following the dependencies defined by the DAG representation. The runtime
engine is responsible for actually moving the data from one machine (node) to
another, if necessary, using an underlying communication mechanism, like MPI.
Tasks that are ready to compute are scheduled according to a data-reuse heuris-
tic: each core will try to execute close successors of the last task it ran, under
the assumption that these tasks require data that was just touched by the termi-
nated one. This policy is tuned by the user through a priority function: among
the tasks of a given core, the choice is done following this function. To balance
load between the cores, tasks of a same cluster in the algorithm (reside on a
same shared memory machine) are shared between the computing cores, and a
NUMA-aware job stealing policy is implemented. The user is then responsible
only to provide the algorithm, the initial data distribution, and potentially the
task distribution. The last one is usually correlated to the data distribution
when the (default) owner-compute rule is applied. In our case, we use a 2D
block-cyclic data distribution as used in the SCALAPACK library, and we map
the computation together with the data. A full description of PARSEC can be
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found in [6].

The implementation of the BIDIAG and R-BIDIAG algorithms have then
been designed as an extension of our previous work on HQR factorization [14]
within the DPLASMA library. The HQR algorithm proposes to perform the
tiled QR factorization of a (p x ¢)-tile matrix, with p > ¢, by using a variety of
trees that are optimized for both the target architecture and the matrix size. It
relies on multi-level reduction trees. The highest level is a tree of size R, where
R is the number of rows in the R x C' two-dimensional grid distribution of the
matrix, and it is configured by default to be a flat tree if p > 2¢, and a Fibonacci
tree otherwise. The second level, the domino level, is an optional intermediate
level that enhances the pipeline of the lowest levels when they are connected
together by the highest distributed tree. It is by default disabled when p > 2gq,
and enabled otherwise. Finally, the last two levels of trees are use to create
parallelism within a node and work only on local tiles. They correspond to
a composition of one or multiple FLATTS trees that are connected together
with an arbitrary tree of TT kernels. The bottom FLATTS tree enables highly
efficient kernels while the TT tree on top of it generates more parallelism to
feed all the computing resources from the architecture. The default is to have
FLATTS trees of size 4 that are connected by a GREEDY tree in all cases. This
design is for QR trees, a similar design exists for LQ trees. Using these building
blocks, we have crafted an implementation of BIDIAG and R-BIDIAG within
the abridged representation used by PARSEC to represent algorithms. This
implementation is independent of the type of trees selected for the computation,
thereby allowing the user to test a large spectrum of configuration without the
harassment of rewriting all the algorithm variants.

One important contribution is the introduction of two new tree structures
dedicated to the BIDIAG algorithm. The first tree, GREEDY, is a binomial
tree which reduces a panel in the minimum amount of steps. The second tree,
AuTo, is an adaptive tree which automatically adapts to the size of the local
panel and number of computing resources. We developed the auto-adaptive tree
to take advantage of (i) the higher efficiency of the TS kernels with respect to
the TT kernels, (ii) the highest degree of parallelism of the GREEDY tree with
respect to any other tree, and (iii) the complete independence of each step of
the BIDI1AG algorithm, which precludes any possibility of pipelining. Thus, we
propose to combine in this configuration a set of FLATTS trees connected by
a GREEDY tree, and to automatically adapt the number of FLATTS trees, and
by construction their sizes, a, to provide enough parallelism to the available
computing resources. Given a matrix of size p X ¢, at each step k, we need
to apply a QR factorization on a matrix of size (p —k — 1) x (¢ — k — 1), the
number of parallel tasks available at the step beginning of the step is given by
[(p—k—1)/a]*(qg—k—1). Note that we consider the panel as being computed
in parallel of the update, which is the case when a is greater than 1, with an
offset of one time unit. Based on this formula, we compute a at each step of
the factorization such that the degree of parallelism is greater than a quantity
¥ X Nbeores, where v is a parameter and nb.yres is the number of cores. For
the experiments, we set v = 2. Finally, we point out that AUTO is defined for
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Figure 5: Shared memory performance of the multiple variants for the GE2BND
algorithm on the first row, and for the GE2VAL algorithm on the second row,
using a single 24 core node of the miriel cluster.
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a resourced-limited platform, hence computing its critical path would have no
meaning, which explains a posteriori that it was not studied in Section 4.

6 Experiments

In this section, we evaluate the performance of the proposed algorithms for the
GE2BND kernel against existing competitors.

6.1 Architecture

Experiments are carried out using the PLAFRIM experimental testbed!. We
used up to 25 nodes of the miriel cluster, each equipped with 2 Dodeca-core
Haswell Intel Xeon E5-2680 v3 and 128GB of memory. The nodes are intercon-
nected with an Infiniband QDR TrueScale network with provides a bandwidth
of 40Gb/s. All the software are compiled with gce 4.9.2, and linked against the
sequential BLAS implementation of the Intel MKL 11.2 library. For the dis-
tributed runs, the MPI library used is OpenMPI 2.0.0. The practical GEMM
performance is of 37 GFlop/s on one core, and 642 GFlop/s when the 24 cores
are used. For each experiment, we generated a matrix with prescribed singular
values using LAPACK LATMS matrix generator and checked that the computed
singular values were satisfactory up to machine precision.

6.2 Competitors

This paper presents new parallel distributed algorithms and implementations
for GE2BND using DPLASMA. To compare against competitors on GE2VAL,
we follow up our DPLASMA GE2BND implementation with the PLASMA
multi-threaded BND2BD algorithm, and then use the Intel MKL multi-threaded
BD2VAL implementation. We thus obtain GEVAL by doing GE2BND+BND2BD+BD2VAL.

It is important to note that we do not use parallel distributed implemen-
tations neither for BND2BD nor for BD2VAL. We only use shared memory
implementations for these two last steps. Thus, for our distributed memory
runs, after the GE2BND step in parallel distributed using DPLASMA, the
band is gathered on a single node, and BND2BD+BD2VAL is performed by
this node while all all other nodes are left idle. We will show that, despite this
current limitation for parallel distributed, our implementation outperforms its
competitors.

On the square test cases, only 23 cores of a 24-core node were used for
computation, and the 24" core was left free to handle MPI communications
progress.

The implementation of the algorithm is available in a public fork of the
DPLASMA library at https://bitbucket.org/mfaverge/parsec.

Hnria PlaFRIM development action with support from Bordeaux INP, LABRI and IMB
and other entities: Conseil Régional d’Aquitaine, Université de Bordeaux and CNRS, see
https://www.plafrim.fr/.
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PLASMA is the closest alternative to our proposed solution but it is only
using FLATTS as its reduction tree, and is limited to single-node platform, and
is supported by a different runtime. For both our code, and PLASMA, the tile
size parameter is critical to get good performance: a large tile size will get an
higher kernel efficiency and a faster computation of the band, but it will increase
the number of flops of the BND2BD step which is heavily memory bound. On
the contrary, a small tile size will speed up the BND2BD step by fitting the
band into cache memory, but decreases the efficiency of the kernels used in the
GE2BND step. We tuned the n; (tile size) and 4, (internal blocking in TS
and TT kernels) parameters to get the better performance on the square case
m = n = 20000, and m = n = 30000 on the PLASMA code. The selected values
are n, = 160, and 7, = 32. We used the same parameters in the DPLASMA
implementation for both the shared memory runs ant the distributed ones. The
PLASMA 2.8.0 library was used.

Intel MKL proposes an multi-threaded implementation of the GE2VAL
algorithm which gained an important speedup while switching from version
11.1 to 11.2 [38]. While it is unclear which algorithm is used beneath, the
speedup reflects the move to a multi-stage algorithm. Intel MKL is limited to
single-node platforms.

ScaLAPACK implements the parallel distributed version of the LAPACK
GEBRD algorithm which interleaves phases of memory bound BLAS2 calls with
computational bound BLAS3 calls. It can be used either with one process
per core and a sequential BLAS implementation, or with a process per node
and a multi-threaded BLAS implementation. The latter being less efficient,
we used the former for the experiments. The blocking size n, is critical to
get performances since it impacts the phase interleaving. We tuned the ny
parameter to get the better performance on a single node with the same test
cases as for PLASMA, and n;, = 48 was selected.

Elemental implements an algorithm similar to SCALAPACK, but it auto-
matically switches to Chan’s algorithm [11] when m > 1.2n. As for SCALA-
PACK, it is possible to use it as a single MPI implementation, or an hybrid
MPI-thread implementation. The first one being recommended, we used this
solution. Tuning of the n; parameter similarly to previous libraries gave us the
value nb = 96. A better algorithm developed on top of the LibFLAME [23]
is provided by Elemental, but this one is used only when singular vectors are
sought.

In the following, we compare all these implementation on the miriel cluster
with 3 main configurations: (i) square matrices; (ii) tall and skinny matrices
with n = 2,000; this choice restricts the level of parallelism induced by the
number of panels to half the cores; and (iii) tall and skinny matrices with
n = 10,000: this choice enables for more parallelism. For all performance
comparisons, we use the same operation count as in [4, p. 123] for the GE2BND
and GE2VAL algorithms. The BD2VAL step has a negligible cost O(n?). For
R-BIDIAG, we use the same number of flops as for BIDIAG; in other words,
we do not assess the absolute performance of R-BIDIAG, instead we provide a
direct comparison with BiDIAG.
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6.3 Shared Memory
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Figure 6: Distributed memory performance (first row) and efficiency (second
row) of the multiple variants for the GE2BND algorithm on the miriel clus-
ter. Grid data distributions are v/nbnodes X vV Mbnodes for square matrices, and
Nbnodes X 1 for tall and skinny matrices. For the square case, solid lines are for
m =n = 20,000 and dashed lines for m = n = 30, 000.

The top row of Figure 5 presents the performance of the three configurations
selected for our study of GE2BND. On the top left, the square case perfectly
illustrates the strengths and weaknesses of each configuration. On small matri-
ces, FLATTT in blue and GREEDY in green illustrate the importance of creating
algorithmically more parallelism to feed all resources. However, on large size
problems, the performance is limited by the lower efficiency of the TT kernels.
The FLATTS tree behaves at the opposite: it provides better asymptotic per-
formance thanks to the TS kernels, but lacks parallelism when the problem is
too small to feed all cores. AUTO is able to benefit from the advantages of
both GREEDY and FLATTS trees to provide a significant improvement on small
matrices, and a 10% speedup on the larger matrices.

For the tall and skinny matrices, we observe that the R-BIDIAG algorithm
(dashed lines) quickly outperforms the BIDiAG algorithm, and is up to 1.8
faster. On the small case (n = 2,000), the crossover point is immediate, and
both FLATTT and GREEDY, exposing more parallelism, are able to get better
performances than FLATTS. On the larger case (n = 10,000), the parallelism
from the larger matrix size allows FLATTS to perform better, and to postpone
the crossover point due to the ratio in the number of flops. In both cases, AUTO
provides the better performance with an extra 100 GFlop/s.
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On the bottom row of Figure 5, we compare our best solutions, namely AuTO
tree with BIDIAG for square cases and with R-BIDIAG on tall and skinny cases,
to the competitors on the GE2VAL algorithm. The difference between our
solution and PLASMA, which is using the FLATTS tree, is not as impressive
due to the additional BND2BD and BD2VAL steps which have limited parallel
efficiency. Furthermore, in our implementation, due to the change of runtime,
we cannot pipeline the GE2BND and BND2BD steps to partially overlap the
second step. However these two solutions still provide a good improvement
over MKL which is slower on the small cases but overtakes at larger sizes. For
such sizes, Elemental and SCALAPACK are note able to scale and reach up a
maximum of 50 Gflop/s due to their highly memory bound algorithm.

On the tall and skinny cases, differences are more emphasized. We see
the limitation of using only the BIDIAG algorithm on MKL, PLASMA and
SCALAPACK, while our solution and elemental keep scaling up with matrix
size. We also observe that MKL behaves correctly on the second test case, while
it quickly saturates in the first one where the parallelism is less important. In
that case, we are able to reach twice the MKL performance.

6.4 Distributed Memory

Strong Scaling Figure 6 presents a scalability study of the three variants on 4
cases: two square matrices with BIDIAG, and two tall and skinny matrices with
R-BiD1aG. For all of them, we couple high-level distributed trees, and low-level
shared memory trees. FLATTS and FLATTT configuration are coupled with a
high level flat tree, while GREEDY and AUTO are coupled with a high level
GREEDY tree. The configuration of the preQR step is setup similarly, except
for AUTO which is using the automatic configuration described previously.

On all cases, performances are as expected. FLATTS, which is able to provide
higher efficient kernels, hardly behaves better on the large square case; GREEDY,
which provides better parallelism, is the best solution out of the three on the first
tall and skinny case. We also observe the impact of the high level tree: GREEDY
doubles the number of communications on square cases [14], which impacts its
performance and gives an advantage to the flat tree which performs half the
communication volume. Overall, AUTO keeps taking benefit from its flexibility,
and scales well despite the fact that local matrices are less than 38 x 38 tiles, so
less than 2 columns per core.

When considering the full GE2VAL algorithm on Figure 7, we observe a
huge drop in the overall performance. This is due to the integration of the
shared memory BND2BD and BD2VAL steps which do not scale when adding
more nodes. For the the square case, we added the upper bound that we can-
not beat due to those two steps. However, despite this limitation, our solution
brings an important speedup to algorithms looking for the singular values, with
respect to the competitors presented here. Elemental again benefits from the
automatic switch to the R-BIDIAG algorithm, which allows a better scaling on
tall and skinny matrices. However, it surprisingly reaches a plateau after 10
nodes where the performance stops increasing significantly. Our solution auto-
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Figure 7: Distributed memory performance (first row) and efficiency (second
row) of the GE2VAL algorithm on the miriel cluster. Grid data distributions
are v/nbpodes X vV NMbnodes for square matrices, and nb,qes X 1 for tall and skinny
matrices.

matically adapts to create more or fewer parallelism, and reduces the amount
of communications, which allows it to sustain a good speedup up to 25 nodes
(600 cores).

Weak Scaling Figure 8 presents a weak scalability study with tall and skinny
matrices of width n = 2,000 on the first row, and n = 10,000 on the second
row?. As previously, FLATTS quickly saturates due to its lack of parallelism.
FLATTT is able to compete with, and even to outperform, GREEDY on the
larger case due to its lower communication volume. AUTO offers a better scal-
ing and is able to reach 10 TFlop/s which represents 400 to 475 GFlop/s per
node. When comparing to Elemental and SCALAPACK on the GE2VAL algo-
rithm, the proposed solution offers a much better scalability. Both Elemental
and SCALAPACK suffer from their memory bound BIDIAG algorithm. With
the switch to a R-BiDiAG algorithm, Elemental is able to provide better per-
formance than SCALAPACK, but the lack of scalability of the Elemental QR
factorization compared to the HQR implementation quickly limits the overall
performance of the GE2VAL implementation.

2Experiments for the n = 10,000 case stop at 20 nodes due to the 32 bit integer default
interface for all libraries
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10000

Figure 8: Study of the distributed weak scalability on tall and skinny matrices
of size (80,000 nb,odes) X 2,000 on the first row, and (100, 000 nb,pdes) X 10,000
on the second row. First column presents the GE2BND performance, second
column the GE2VAL performance, and third column the GE2VAL scaling effi-

ciency.

7 Conclusion

In this paper, we have presented the use of many reduction trees for tiled bidiago-
nalization algorithms. We proved that, during the bidiagonalization process, the
alternating QR and LQ reduction trees cannot overlap. Therefore, minimizing
the time of each individual tree will minimize the overall time. Consequently,
if one considers an unbounded number of cores and no communication, one
will want to use a succession of greedy trees. We show that such an approach
(BIDIAGGREEDY) is asymptotically much better than previously presented ap-
proach (FLATTS). In practice, in order to have an effective solution, one have
to take into account load balancing and communication, hence we propose trees
that adapt to the parallel distributed topology (highest level tree) and enable
more sequential but faster kernels on a node (AUTO).

We have also studied R-bidiagonalization in the context of tiled algorithms.
While R-bidiagonalization is not new, it had never been used in the context
of tiled algorithms. Previous work was comparing bidiagonalization and R-
bidiagonalization in term of flops, while our comparison is conducted in term of
critical path lengths. We show that bidiagonalization has a shorter critical path
than R-bidiagonalization, that this is the opposite for tall and skinny matrices,
and provide an asymptotic analysis. Along all this work, we give detailed critical
path lengths for many of the algorithms under study.

Our implementation is the first parallel distributed tiled algorithm imple-
mentation for bidiagonalization. We show the benefit of our approach (DPLASMA)
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on a multicore node against existing software (PLASMA, Intel MKL, Elemental
and ScaLAPACK) for various matrix sizes, for computing the singular values of
a matrix. We also show the benefit of our approach (DPLASMA) on a few mul-
ticore nodes against existing software (Elemental and ScaLAPACK) for various
matrix sizes, for computing the singular values of a matrix.

Future work will be devoted to gain access to a large distributed platform
with a high count of multicore nodes, and to assess the efficiency and scalability
of our parallel distributed BIDIAG and R-BIDIAG algorithms. Other research
directions are the following: (i) investigate the trade-off of our approach when
singular vectors are requested; a previous study [24] in shared memory was
conclusive for FLATTS and no R-BIDIAG (square matrices only); the question
is to study the problem on parallel distributed platforms, with or without R-
BIDI1AG, for various shapes of matrices and various trees; and (ii) develop a
scalable parallel distributed BND2BD step; for now, for parallel distributed
experiments on many nodes, we are limited in scalability by the BND2BD step,
since it is performed using the shared memory library PLASMA on a single
node.
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