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Abstract

Branch-and-Bound (B&B) algorithms are tree-based expéoyamethods for solving combinatorial optimiza-
tion problems exactly to optimality. These problems aremfarge in size and known to be NP-hard to solve. The
construction and exploration of the B&B-tree are perforrasithg four operators: branching, bounding, selection
and pruning. Such algorithms are irregular which makeg theiallel design and implementation on GPU chal-
lenging. Existing GPU-accelerated B&B algorithms perfaniy a part of the algorithm on the GPU and rely on
the transfer of pools of subproblems across the PCI Expressobithe device. To the best of our knowledge, the
algorithm presented in this paper is the rst GPU-based B&dgdethm that performs all four operators on the de-
vice and subsequently avoids the data transfer bottlenetwkeen CPU and GPU. The implementation on GPU is
based on the Integer-Vector-Matrix (IVM) data structuraahhs used instead of a conventional linked-list to store
and manage the pool of subproblems. This paper revisitstledased B&B algorithm on the GPU, addressing
the irregularity of the algorithm in terms of workload, memaccess patterns and control ow. In particular, the
focus is put on reducing thread divergence by making a jadgtchoice for the mapping of threads onto the data.
Compared to a GPU-accelerated B&B based on a linked-listathorithm presented in this paper solves a set of
standard owshop instances on average 3.3 times faster.

Keywords: GPU computing, Branch-and-Bound, Combinatorial optiriarg Irregular applications

Introduction

Many industrial and economic problems, like owshop, aremetation combinatorial optimization prob-
lems. Solving these problems consists in nding an optimainputation of elements among a large nite set
of permutations. A wide range of these problems are knowrettaige in size and NP-hard to be solved. The
branch-and-bound (B&B) algorithm is one of the most useaexethods to solve these permutation optimization
problems. Itis based on an implicit enumeration of all thesfble solutions of the problem to be tackled. Building
and exploring the B&B tree are performed using four opegatbranching, bounding, selection and pruning. In
a B&B algorithm, if the lower bound for some tree node A is geedhan the best solution found so far for some
other node B, then A may be discarded from the search. Thigleayof the B&B algorithm signi cantly reduces
the number of explored nodes. However, the execution tineeB%B signi cantly increases with the size of the
instance, and often only small or moderately-sized ingtaigan be practically solved. For this reason, over the last
decades, parallel computing has been revealed as aniatiraety to deal with larger instances of combinatorial
optimization problems.

Because of their massive data processing capability andréraarkable cost ef ciency, graphics processing
units (GPU) are an attractive choice for providing the cotimgupower needed to solve such instances. While
GPU accelerators are used in today's largest high-perfocemmaomputing systems, their usage is often restricted
to regular, data-parallel applications. Indeed, the itegnature, in terms of workload, control ow and memory
access patterns, of applications such as B&B may serioeagjsedle the performance of the GPU. The acceleration
of B&B algorithms using GPUs is therefore a challenging tasilich is addressed by only a few works in the lit-
erature, such ad], using owshop as a test cas&]| applied to the travelling salesman problem a8fd &pplied
to the knapsack problem where the search tree is binaryhAde approaches use linked-lists (or deques, stacks)
Preprint submitted to Elsevier October 19, 2015



to store and manage the pool of subproblems, likewise moatlpbB&B algorithms in the literature. Such data
structures are very dif cult to handle on the GPU and ofteduice prohibitive performance penalties. For this
reason all GPU-accelerated B&B algorithms at our knowleglgggorm the management of the pool of subprob-
lems at least partially on the CPU, requiring costly datagdfars between host and device. #if is shown that
the bounding operator for owshop consumes 999% of the execution time of a sequential B&B and that the
GPU-based parallelization of this operator can providelstuntial acceleration of the algorithm. However, as
the management of a list of pending nodes is performed on &, ¢he transfer of data between CPU and GPU
constitutes a bottleneck for GPU-accelerated B&B algargh

Our parallel GPU-B&B algorithm is, to the best of our knowdedthe rst one that implements all four B&B
operators on the GPU, requiring virtually no interactiothahe CPU during the exploration process. Itis based on
the Integer-Vector-Matrix (IVM) data structure, a recgrdbveloped’] data structure which allows the ef cient
storage and management of the pool of subproblems in petionHaased combinatorial optimization problems.
In [6] private IVM data structures and IVM-based work stealinght@iques are used in a multi-core parallel B&B
algorithm. The IVM structure provides some regularizatient allows to store and manage the pool of subprob-
lems with data structures of constant size. However, the-béded parallel B&B is still highly irregular in terms
of workload, control ow and memory access patterns. Nonéhebe three issues can be ignored when imple-
menting the B&B algorithm on the GPU and all three are ad@ssthis paper. The focus is put on the reduction
of thread divergence which arises in CUDA's SIMD executiondal as a consequence of control ow irregular-
ities. For a set of owshop problem instances that consistdneduling 20 jobs on 20 machines our IVM-based
GPU-B&B processes on averageg33imes as many nodes per second as the GPU-accelerated-listkkbased
(GPU-LL) B&B presented in{].

The paper is organized in four main sections. Secligmesents the B&B algorithm in it's sequential form,
the parallelization model used in our approach and prowsdese more details on the GPU-LL B&B-algorithm.
Section2 explains the functioning of the Integer-Vector-Matrix Yy data structure which is used for the stor-
age and the management of the pool of subproblems. SeRfitmscribes our GPU-based B&B algorithm and
Section4 proposes alternative mapping schemes for the algorithimtivé aim of reducing thread divergence. In
Sectionb5, we report the obtained experimental results, compariag#rformance of different mapping schemes
and evaluating the performance of our GPU-based algoritheninparison to a GPU-accelerated linked-list based
B&B. Moreover, the scalability of our algorithm is analyzexnsidering two different work stealing strategies.
The stability of our algorithm towards instances of differsize and irregularity is as well investigated. The paper
ends with the conclusions drawn from this work and its pertpes.

1. Parallel branch-and-bound algorithms

This section presents the B&B algorithm and its paralléiimausing different models. The focus is put on the
parallel tree exploration model and the parallel evaluatitbounds model which are used in our GPU IVM-based
B&B.

1.1. Sequential branch-and-bound

Several exact resolution methods used in combinatorianigdtion are branch-and-bound (B&B) like algo-
rithms. These methods are mainly divided into three basi@nts: simple B&B, branch-and-cut (B&C), and
branch-and-price (B&P). There are other B&B variants lessvin such as branch-and-péf, [branch-and-win
[8], and branch-and-cut-and-soh@.[ This list is certainly not exhaustive. It is also possitdeconsider a divide-
and-conquer algorithm as a B&B algorithm. It is enough to @eenthe pruning operator from the B&B to get a
divide-and-conquer algorithm. Some authors consider BB&R, and the other variants as different algorithms
than B&B. These authors use B&X to refer to algorithms like B&B&C, B&P, etc. In what follows, B&B
algorithm refers to simple B&B or any other variant of thigaifithm.

B&B is based on an implicit enumeration of all the solutiorishee problem being solved. The space of
potential solutions (search space) is explored by dyndiyilbailding a tree where, theoot node represents the
initial problem to be solved, thieaf nodesare the possible solutions and timernal nodes are subspaces of
the total search space. Possible solutions areNtdlement permutations, like134for N = 4. In practice, a
solution often corresponds to a scheduling of jobs. Intarodes can be seen as a partial permutations, consisting
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of scheduled and unscheduled jobs. For instance, we wibbt@ti13/4the subproblem where jobs 1 and 3 are
unscheduled while 2 is scheduled in the beginning and 4 iscsdkd in the end. The subsp&t/@3/4contains
solutions2134and 2314 so, closer to the leaves the size of the subspaces is sraallesmaller. Using this
notation, the initial problem writed. 234/ The construction of such a tree and its exploration areopexéd using
four operators: branching, bounding, selection and pginB&B proceeds in several iterations where the best
solution found so far is saved and can be improved from aatiter to another. All subproblems generated and not
yet processed are kept in a data structure, for example edii&t. At the beginning, this data structure contains
the initial problem. Then, at each iteration of the algarith

Thebranching operator partitions a subproblem into several smaller, pairwis@dis subproblems. For
instance, a subproblem with unscheduled jobs can be decomposed ksubproblems by xing each
unscheduled job either in the beginning or in the end. Thegdad subproblems are then inserted into the
data structure, according to the semantics of the latter.

The bounding operator is used to compute a bound value of the optimal solution of ggnerated sub-
problem.

And thepruning operator uses this bound to decide whether to eliminate a subprobtemaontinue its
exploration.

Theselection operatorchooses one subproblem among all pending subproblemsl sitditee data structure
according to an exploration strategy. The selection of @saliiem could be based on its depth in the B&B
tree which leads to a depth- rst exploration strategy. lis fraper only thelepth- rst strategyis used.

The branching of a subproblem may consist in placing unadeddobs either in the beginning (before the rst
“=") orin the end (after the second™). The choice of the branching rule has an impact on the sittescexplored
tree. It is possible to take advantage of this by choosingelh @&eration the “better” decomposition, according to
some heuristic criterion. In our approach both sets of saitipms are generated and evaluated at each iteration,
but only the decomposition for which the sum of lower bourglgrieater is retained. Indeed, the retained set is
likely to contain more subproblems to be pruned, becausawhage lower bound in this set is greater than in the
other set. This branching rule aims at reducing the treeraime ef ciently (at the expense computing twice as

many bound values per decomposed node).

1.2. Parallel branch-and-bound models

B&B algorithms can signi cantly reduce the computing powezeded to explore the whole solution space.
However, such power may still be huge, especially when sgllarge instances. Using many processors or cores
in parallel is an effective way to reduce the exploratioretirilany approaches to parallelize B&B algorithms are
proposed in the literature. A taxonomy of these models isqared in 10]. This taxonomy is based on the clas-
si cations proposed in11] and [12]. Four models are identi ed: the multi-parametric parhffeodel, the parallel
evaluation of a bound model, the parallel evaluation of lmsmodel, and the parallel tree exploration model. This
paper focuses on the latter two as our GPU-based B&B is basadombination of these two models.

Theparallel tree exploration model consists in simultaneously exploring several subprobkéaisde ne dif-
ferent search subspaces of the initial problem (Fig@eThis means that the selection, branching, bounding and
pruning operators are executed in parallel, synchronausésynchronously, by different B&B processes which
explore these subspaces independently. In asynchronods, rttee B&B processes communicate in an unpre-
dictable manner to exchange work units and informationh<ssthe best solution found so far. This requires
pairwise synchronization between B&B-processes. In rudte implementations this can be done using mutexes
and semaphores. Without such synchronization primitithess parallel tree exploration is necessarily performed
synchronously on GPUs. In synchronous mode, a B&B algoriias different phases between which the B&B
processes are synchronized and may exchange informatiamp&red to other models, the parallel tree explo-
ration model is more frequently used and is the subject ofrrmesearch. One important reason is that the degree
of parallelism of this model may be important, especialljairge instances. Indeed, the number of parallel explo-
ration processes is only limited by the capacity to suppgmttcontinuously with subproblems to explore. This
work supply depends, on one hand, on the size of the instaiong bolved. On the other hand, as the B&B tree is
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Figure 1: lllustrations of models for parallel B&B algonitts

Figure 2: lllustration of the combined parallel tree exptan/parallel evaluation of bounds model.

highly irregular, it depends on the distribution and shgifithe load, which is one of the main issues raised by this
model. Among other issues one can include the placement amdgement of the set of pending subproblems.
Also, the communication of the best solution found so fag, dietection of the termination of the algorithm and
fault tolerance can be challenging, especially in hetemegas environment4 §]. In the case of a GPU implemen-
tation other issues arise, such as branch divergence doatwkt ow irregularities. Besides potentially yielding
a very high degree of concurrency, an important aspect sftividel is that it can be combined with other parallel
B&B models. At least conceptually, each B&B process thatipi@ates in the parallel tree exploration may in turn
be parallelized, adding a second level of parallelism.

For instance, each independent B&B process may uspdtadlel evaluation of bounds model(Figurelb).
In this model a single B&B process is launched and the subignabgenerated by the branching operator are eval-
uated in parallel. This model is well-adapted in cases whereost of the bounding operator is high, compared
to the rest of the algorithm. For combinatorial problems thiodel's degree of parallelism depends on the depth
of the current active node in the tree. Moreover the modeata-gharallel, synchronous and ne-grained (the cost
of the evaluation of a bound) which is the execution moddi liedter ts many-core architectures like GPU. The
combined parallel tree exploration/parallel evaluation d bounds model(Figure2) yields a much higher degree
of parallelism than using one model alone. In synchronoasion mode the subproblems generated by all B&B
processes are evaluated in a single parallel bounding pWsen enough parallel exploration processes are used,
the number of generated subproblems per iteration appesable maximum number of concurrent threads on the
GPU. So, it is theoretically possible to reach a very goolization of the GPU resources. This combined model
is used in our GPU-based B&B algorithm.
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Figure 3: An example of a pool obtained when solving a pertiartgproblem of size 4.

1.3. Related works

In [4] the authors have investigated the bene ts of using a GPtheparallelization of the bounding operator
for the owshop scheduling problem. They have shown thagafalrevaluation of subproblems on the GPU can
provide a considerable acceleration of the algorithm, asatvshop bounding operator consunte97% of a the
computation time in a sequential B&B. Whilé][focuses on optimizing the placements of data in the hibieat
GPU memory, the thread divergence issue is addresseldfin The reduction of the overhead induced by data
transfers between host and device is another importanedya to be faced when using GPU for the acceleration
of B&B. In [ 1] the two contributions previously cited in this paragraph extended, proposing an operator-driven
approach that implements the branching, bounding and pgurperators as CUDA-kernels. In this approach a
pool of nodes is selected on CPU side, according to selestrategy based on the depth of a node, resulting in
depth- rst exploration. The selected pool is transferredhe device, where the subproblems are branched, the
resulting children-nodes evaluated and only the non-ptwhé@dren nodes are sent back to the CPU for insertion
into the pool of pending subproblems. The pools of subproblare implemented as stacks for depth- rst search
(DFS) — however, as other data structures, like priorityugse may be used for other search strategies it will be
referred to as “linked-list-based”. The choice of DFS is aied by the fact that it results in much lower memory
requirements than other search strategies, like breadthBranching is performed as described in Subsedtitn
generating two poolseginandend retaining only the one where the sum of lower bounds is greAtparticularity
of [1] consists in the dynamic adjustment of the size of the of @&gools using an auto-tuning heuristic, providing
a regularization of the workload. The authors show that ¢hiarg and pruning on the GPU reduces the amount of
data transferred between the host and the device. Howbese data transfers remain a bottleneck, even for the
algorithm proposed inl]]. The use of linked-list-based data structures actually@nt the ef cientimplementation
of the selection operator inside the GPU. B4 multi-core B&B algorithm based on an alternative datacitire
called IVM has been proposed. This data structure, whiclessidbed in the following Sectio? has a constant
memory footprint, making it more suitable for a GPU implertation.

2. IVM-based Branch and Bound

This section describes the Integer-Vector-Matrix (IVM¥bd B&B algorithm. For comparison, Subsectibh
explains the working of a conventional linked-list of nod@&ais is illustrated with an example of a pool obtained
when solving a owshop instance de ned by 4 jobs. Flowshopeaplained in Subsectidhl, is a permutation
problem for which the objective is to nd the optimal permtiva of jobs according to one criterion or several
criteria. This example with 4 jobs is used, in Subseco? to explain the management of a pool using the
IVM data structure. Subsectioh3 introduces the factorial (or factoradic) number system Snbdsectior?.4
describes how intervals of factoradic numbers are useddodenand communicate work units between different
IVM-structures.

2.1. Serial linked-list-based B&B
The pool of Figure is represented as a tree in order to visualize the probldipfsblem relationship between

nodes, and as a matrix to facilitate the comparison with ®M-based approach described in Subsecfon
5



AddSubProblem I
[2314/H234/1H24/13H3/124H4/123]
SelectSubProblem \
StealSubProblems
(a) Linked-list-based representation. (b) IVM-based representation.

Figure 4: An example of a pool obtained when solving a pertimartgproblem of size 4

However, this pool is usually implemented with a linked-tis shown in Figurda For the sake of simplicity, jobs
are only scheduled in the beginning of the partial permaitati For instance, in Figu® the node24/13means
that job 2 is scheduled at the rst position, job 4 at the secpasition, and jobs 1 and 3 are not yet scheduled.
In this gure, dashed nodes represent subproblems whiclka@dded into the linked-list and selected from it. At
each B&B iteration, the algorithm points to a node of the B&Bbp In the example of Figurg, the algorithm is
currently pointing to the solutioR314/ Therefore, Figurdarepresents the state of the pool just before removing
2314/ Before selectin@314/ the linked-list contains ve nodes, namelyl23 3/124 24/13 234/1and2314/

Before having a linked-list in this state, some operatiaesapplied. At the beginning of the B&B, none of
the four jobs is scheduled (i.£1234). The nod€1234is branched/decomposed into four nodes whichl#?84
2/134 3/124and4/123 In each of these nodes, one job is scheduled and the threxjoltis are not yet scheduled.
This example assumes that the rst notl234is processed or pruned, and the algorithm selects and anch
the second nod2/134 The decomposition of this node gives three nodes, naB§4 23/14and24/13 The
example also assumes that the rst n@ié34is processed or pruned. Therefore, the algorithm deconspbse
second nod@3/14 and obtains two new nodes which @&&1/4and234/1 The node231/4represents a simple
subproblem and accepts only one solutki4/

2.2. Serial IVM-based B&B

Figuredb shows the representation of the state of the pool of Figwsing an integer (l), a square matrix (M)
of integers and a vector (V) instead of the conventionaldahkist used in Subsectighl The size of the square
matrix M and the vecto¥ are equal td\, the number of jobs. In this exampld,= 4. In matrixM a cell with
a column number strictly greater than its row number is nesed (upper triangular matrix). Each node of the
B&B pool is represented by one cell of the matrix. In otherdgiit is represented by a single integer instead of a

one of theN subproblems of depth 1 obtained by xing respectively joB;1::;N at the rst position. After the
decomposition of the root node, only the rst rowMfis lled, all following rows are empty.

To selectone of these subproblems on the current léyéthe value ofV(l) is set such that it points to the
corresponding cell. For instance, settvi¢0) = 1 selects2/134 The so-callegosition-vector Valways
points to the currently active node.

In order tobranch a selected node, all elements of the active row, except tegpomted by the position-
vector, are copied to the next row. For instance, to decomptd84 the elements of row= 0, except the
scheduled jotM(0;V(0)) = 2 are copied to the next row. Also, the intede [0; N[ is incremented by one
when a subproblem is decomposed.

To prune a subproblem whose lower bound is greater than the best@ofound so far, the corresponding
cell should be ignored by the selection operator. For ircgtato select the next node in rdw 1, the node
21/34is skipped by incrementing(1). To ag a cell as “pruned” its value is multiplied by 1. With this
convention the branch procedure actually consists in captyie absolute values to the next row, i.e. copying
job jasjandjasj.



Each of the pool management operators can be expressed etsoanoa the IVM-structure. Before the bounding
operator can compute the lower bounds of the generatedahieprs, adecodeoperation is required. For exam-
ple, the solution currently encoded in Figudiieis 2314/ which can be directly read by looking (from row 0 to row
| = 3) at the values that are pointed by the position-vectorh\tfie same vector and matrix, if the integet is 1,
the subproblem encoded by the IVM-structur@&14

Using the IVM data structure, thaepth- rst search (DFS) strat- Algorithm 1 Serial select-and-branch
egy consists in selecting deepest leftmost non-negativedé. The  1: procedure seLecFAnD-BRANCH
depth- rst select-and-branch procedure is described igoAthm 1. while (positionvector - end)do

. .. . . . if (row-end)then (v > 1?
First, a promising (i.e. non-pruned) node is searched ircthreent cell-upward V() ++
row I, right of the current celM(1;V(l)), which is done by incre- e'sigl(l_c:é';:\'l'vg'gate)then : M('?Vszl))jfr’?

else
generate-next-line (branch)

menting the position-vector (line 6). If no promising noddéaund in
the current row, the search continues in the row abbvel(), starting D

from the cell right of the previously selectdd(l 1;V(I 1)) (line end if

4). When a promising node is found it is branched by genegatia 13 endeggmfre

next line (line 8). The search stops without branching ifglsition-

vectorV has reached its maximum allowed valead-vectoywithout

nding a promising node. When using a linked-list for the ilamentation of the pool of subproblems the choice
of DFS is motivated by the reduced memory requirements of E&df8pared to breadth- rst search (BFS) or other
selection strategies. The IVM structure is conceived adtemative data structure for DFS and it is not possible
to perform a BFS using IVM.

In order to allow the scheduling of jobs at both ends of theiglgpermutations, an additional vector called
direction-vectoris used. This vector indicates for each row if the job poirdgdhe position-vector is to be placed
in the beginning, or the end of the schedule. For instandbeifVM-structure in Figurétb is completed with the
direction-vector(0110) then the jobs 3 and 1, pointed in the second and third rowdredsiled at the end. The
currently encoded node is th@d//13 which is a solution.

REomNourwnN

2.3. Position-vector: factoradic numbers

Throughout the exploration process, the position-vecédraves like a factoradic counter. In the example of
Figure4b, the value of this vector is equal @00when the algorithm points to the rst solution of the B&B
tree, and its value is equal 810when the algorithm points to the last solution of the treetwien these two
values, the vector successively takes the following val@€4.Q 010Q 0110 020Q 021Q ...,320Q For each of
these values, the algorithm points to a different solutibthe tree. There are 24 possible values since there are
24 solutions (i.e. 4!). In reality, these 24 position-veactalues correspond to the numbering of the 24 solutions
using a special numbering system, called factorial numysstem. In the decimal number system, the weight of
theit" position is equal to 1Qwhile in the factorial number system, the weight of teposition is equal ta!. In
the decimal number system, the digits allowed at each paositie 0 9, while in the factorial number system, the
digits allowed for theé'" position are 0 i. Therefore, the digit of the rst position is always 0. Thefarial number
system, also called factoradic, is a mixed radix numerdesygdapted to numbering permutations. It satis es the
conditions of what G. Cantor calledsimplenumber system in15]. Applied to the numbering of permutations,
the French ternmuneration factoriellewas rst used in 188816]. Knuth [17] uses the ternfactorial number
systenmand the ternfactoradic which seems to be of more recent date is used, for instam¢Eg]i

2.4. Parallel IVM-based B&B

The properties of the position-vector allow us to say thaB&B-process explores an intervi; B[ using its
IVM-structure”. In the example of Figuréb, the interval explored by the algorithm[i300Q 3210. It is therefore
possible to have two procesdR§ R2such ask1explored0000 X[ andR2exploregX;321(, each process using
its private IVM-structure. Instead of sets of nodes, thekuamits of the IVM-based parallel B&B are intervals
of factoradics. Because of the irregular and unpredictslhée of the explored tree, dynamic load balancing is
necessary to maintain the degree of parallelism induceldégarallel tree exploration model.RRends exploring
its interval beforeR1, thenR2requests a portion of its interval froRiL ThereforeR1andR2can exchange their
interval portions until the exploration of 40000 321(. With the exception of rare works such d8J, work units

7



exchanged between processes are sets of nodes.

To implement this strategy based on intervals of factoadids necessary to allow a thread to explore any
interval[A; B[. To begin the exploration at a given vecior= ( PiPPs:::Py) (= A, expressed as a factoradic) the
IVM-structure needs to be initialized accordingly. Thereat initialized state is such that it would be the same if
the new position-vectod had been reached through the exploration process. Theréfierinitialization process
differs from the normal B&B process only in the selection igter. Instead of running the depth- rst selection
procedure (Algorithml), the initialization process selects at each ldvéhe node pointed by (k) as long as
the selected subproblem is promising. If a pruned node ectal, the initialization process is nished and the
IVM resumes exploration, searching for the next node to dgmse. If the rstl positions of the newly received
position-vector coincide with the position-vector of thietim IVM, then the victim's matrix and direction-vector
for lines 1, 2;:::;1 can be copied to the thief. The thief IVM then starts inidaig at linel + 1. The initialization
process may thus last for 1 Miterations.

3. GPU IVM-based Branch and Bound

This section describes our GPU-B&B algorithm based on thé thata structure. The memory requirements of
the IVM structure are very advantageous for a GPU-impleatant of the B&B algorithm. The required amount
of memory and possible data placements in the hierarcheate memory are discussed in Subsec8dh The
amount of used memory depends on the number of IVM-strustused by the algorithm. This number also has
a direct impact on the degree of parallelism which is anayse&ubsectior8.2 Both these subsections consider
the framework for the GPU-based B&B algorithm. The algarithiself is explained in Subsectio®3. This
subsection starts from a general illustration of the atgamiwhich is followed by a more detailed description of
its components, which are 6 CUDA-kernels.

3.1. Memory requirements

Compared to a conventional linked-list-based approaehiMM data structure allows to reduce the CPU time
and memory required for the storage and management of tHeopsobproblems§]. Contrary to a linked-list,
the IVM data structure is well adapted to the GPU memory molettead of using a variable length queue that
requires dynamic memory allocations and tends to be sedttermemory, the IVM structures are constant in size
and need only one allocation of contiguous memory. For alprolinstance withN jobs, the storage of the matrix
M requiresN? bytes of memory (foN < 127, using 1-byte integers). Moreoved ®ytes are needed to store the
position-, end- and direction-vectors, 1 byte to store teger, and\ bytes to store permutations before calling
the bounding operator. In total, the IVM data structure iegga constant amount offl4N+ N2 bytes of memory,
i.e. 481 bytes per IVM for a 20-job instance. It is possiblerstonly the upper triangular part df, requiring

1+ 4N+ w bytes per IVM, i.e. 291 bytes wheévi= 20. ForN = 20 it is therefore possible to t 100 IVM
structures into 48 kB of shared memory. In this paper, ordgyupper triangular part dfl is stored.

From a programming perspective the IVM-structures are ¢éa$andle. The components of all IVMs are
merged into single one-dimensional arrays. For instaraeing a N-job instance using IVM structures, the
matrices are stored in a one-dimensional amayrices  of sizeT w allocated in global device memory.
The elemeni(i; j) of the K" IVM is accessed bynatrices[indexM(i,j,k)] ,whereindexM is a wrapper-
function de ned as in Equatiori] if M is stored as a square and as in Equat®)nf(the upper triangular part of
M is stored.

indexM(i; j;K)= k N N+i N+ j Q)

indexM(i; j;K) = k wﬂ N %H )
The data needed for the computation of the lower bounds iglyn@ad-only and requires 38 kB of memory.
This data is stored in the constant memory space, residigbpbal device memory but accessed through a cache
on each streaming multiprocessor (SM). Some of the datatates used for the bounding may be loaded to
shared memory during the computation of the lower boundac@ming the use of shared memory for those data
structures, this paper follows the recommendations mafiEnwhere this dif cult choice is examined.
8
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Figure 5: Flowchart of the GPU-based IVM-B&B algorithm

3.2. Degree of concurrency

Often, the bounding operator is by far the most time consgrpiart of a B&B algorithm. As mentioned
before, in the case of owshop it amounts for about 999% [4] of the total execution time for a sequential B&B.
It is therefore crucial for the performance of our GPU-baB&®B that the parallel bounding operation makes
the best use of the GPU resources. The choice of the numbe&Bf@Bocesses% IVMs) to use is therefore
guided by its impact on the performance of the bounding Ker@a the one hand, if too few IVMs participate
in the exploration process, the bounding kernel undereslithe GPU. On the other hand, if too many IVMs are
used, then the number of generated subproblems per iteta®eeds the maximum occupancy of the device and
the computation of bounds is partially serialized. The namif subproblems generated per IVM per iteration
is variable and unpredictable. However, the workload fe bounding kernel can be roughly estimated. For
owshop instances of 20 jobs, the bulk of subproblems isa#d at depth 10, leading to approximately 20 bound
evaluations per IVM and iteration. Supposing that the nundfeempty IVMs is low thanks to dynamic load
balancing, and given the approximative number gf@® concurrent threads at full occupancy, the nunibef
used IVMs should be arourid= 1000.

3.3. IVM-based GPU-B&B

In consistency with the CUDA programming model, the GPUeldlaparallel tree exploration is performed
synchronously. The algorithm consists of different phdsstsveen which the B&B processes are synchronized.
Although some implementations of global synchronizatiomfives are proposed in the literatur2(], the global
synchronization of an arbitrary number of thread blocksaraly be achieved implicitly through kernel termination.
Therefore the GPU-based B&B is implemented as a series of SkHdnels which are launched in a loop until
the termination of the tree exploration. Figusgrovides an overview of the algorithm. All B&B operators
are entirely performed on the GPU and correspond to ve Kerrehare , goToNext , decode , bound and
prune . Moreover an auxiliary kerngdrepareBound is used to build the mapping for the bounding operation
(explained in Sectiod). In this phase the best found solution so far is determined min-reduce of the best
solutions found by all IVMs. In the same reduce procedurédimaination of the algorithm is detected by searching
the maximum of a per-IVM state variable where the seatgtyis encoded as 0. In order to stop iterating through
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the B&B loop this information needs to be copied to the hosiaah iteration. Throughout the exploration process
this is the only data (1 byte) that is transferred betweenm das device memory.

3.3.1. Load-balancing: kernshare
Work stealing (WS) is well-adapted for irregular appliAlgorithm 2 Kernelshare
cations. Like threads of a multi-core application, the IVM: procedure SHare
structures must share their work units. In a multi-core eg: ¢ blockidxcblockbim.x + threadidx.x
i . : p(thid)
vironment, a thread that runs out of work becomehiaf 4:  vicim  (vm-1)%T
that attempts to steal a portion of work fronvigtimthread 3 ' (statelvml=emply .and. statefvictiml=explorinten
. R X o X : -pos computeNewPos( pos|victim], end[victim] )
which is selected according to a victim selection strategy. posfivm]  new-pos
The same principle can be applied to the GPU-based B&. zgg{mgmleng};@c}iml
. . . . pos
The proposed load balancing strategy is conceptuallyrdiffeo: state[ivm]  init
ent in the sense that an IVM-based B&B process does B ende’;‘gicfedure
necessarily correspond to any particular thread but only-te
a segment of data. Secondly, compared to multi-core WS
strategies, the WS operations between IVMs are lock-frekmarformed synchronously. The kerrsare
implements the 1D-ring WS strategy presentedbin Algorithm 2 shows the pseudo-code of this procedure. Al-
though designed for multi-core IVM-based B&B, the 1D-rirtgpgegy suits the synchronous execution mode of
the GPU. TheT IVM structures are numbered=R0;1;:::;;T 1 and are arranged as an oriented ring, i.e. such
that IVM 0 is IVM (T  1)'s successor. Each empty IVM R tries to steal work from itsde@esso(R  1)%T.
This operation can be performed in parallel, as the mappirgpty IVMs onto their respective victims is one-
to-one. If the selected victim has a non-empty intervalntak but 1Tt of its interval is stolen. The function
computeNewPos (line 6) receives the victim's intervgh; B[ as input and returns a poi@t=( 1 %)A+ %B.
The division of intervals can be performed directly on thetdaadic numbers without explicitly converting them to
decimals. The IVM which got stolen continues the exploratidthe remaining intervdlA; C[, while the stealing
IVM needs to initialize its matrix at the new position-vec@® before starting the exploration ¢&; B[. Its state-
variable is therefore set iait (line 10). Each IVM cycles through three distinct statesnfiexploringto emptyto
initializing and back teexploring An IVM can be in one of these three states at any given stageedadlgorithm.
Depending on the state of an IVM, different actions are penéx during an iteration. In this kernel one thread
per IVM is required. More parallelism can hardly be expodddwever, more threads can eventually be used to
assign vectors in one parallel operation (lines 9). In Subsectior.4 it is explained how, based on the kernel
share , this WS strategy can be extended.
3.3.2. Selection and branching: kerrggd ToNext

The goToNextkernel corresponds to the selection and branchiAigorithm 3 KernelgoToNext
operators. Algorithn8 shows the pseudo-code of this kernel. It pert: procedure coToNExT

forms the selection operator for both, exploring and ititiag IVMs. %
It also updates the IVM-states if necessary. For each exgldvM 4
it performs theselect-and-branch procedure described in Al- gf
gorithm 1 (line 12). If an exploring IVM nds no promising node 7:
(line 13), then its state variable is setdmpty If the end of an IVM's gf

initialization process is detected (line 5) it switchesesgloring It 10:
is possible that, within one iteration, an empty IVM recsiaa inter- }%
val, nishes initializing and returns to the empty state. é&gplained 13:
in Subsectior?.4, the initialization process differs from the norma}gf
exploration process only in the selection operator. Thiiization- 16:

thdldx  blockldx.x*blockDim.x + threadldx.x
ivm  map(thdldx)
if (state[ivm]==init)then
if (init- nished(ivm)) then
state[ivm] exploring
else
generate-next-line
end if
end if
if (state[ivm]==exploringthen
select-and-branch
if (exploration- nished(ivm))then
state[ivm] empty
end if
end if

. branch

selection consists in choosing the node pointed by theipnsiector. 17- end procedure

Thus, only thegenerate-next-linbranching procedure is performed.

Each IVM is handled by a single thread as the operations tlaifsneach IVM structure are essentially of se-
quential nature. This kernel contains a very high numbeioofittional instructions depending on the state of an
IVM as well as on its current depth in the B&B tree. In order twid thread divergence the mapping of threads
onto the IVM structures (line 3) must be chosen carefullyisThapping is discussed in Sectién
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Figure 6: lllustration of the decode and bounding phases

3.3.3. Preparation of subproblems: kermdcode

For each non-empty IVM a father subproblemis selected igtii®oNext kernel. Thedecode kernel brings
these subproblems to the foL3/4which can be evaluated by the bounding operator. Each ngtydiM data
structure is read and the kernel outputSl-integer sequencechedulewith two integerdimitl andlimit2. The
integerdimitl, limit2 represent the “/”s in the adopted notation. This decodirgraipon is essentially sequential,
so each IVM is handled by a single thread. Between IVM stmastthe number of jobs affected in the beginning
or the end differs, which induces thread divergence if se\breads within the same warp are assigned to different
IVMs.

3.3.4. Parallel evaluation of lower bounds: kerrelund

The ef ciency of the tree pruning mechanism directly depead the relevance of the bounding operator. The
lower bound proposed by Lagewegal. [21] is used in our bounding operator. This bound is known fogdsd
results and has complexity @(M?Nlog(N)), whereN is the number of jobs anM the number of machines.
This lower bound is mainly based on Johnson's theor2gh\vhich provides a procedure for nding an optimal
solution for owshop scheduling problem with 2 machines.eldomputation of the lower bound includes several
control ow instructions that depend on the depth of a subpem and on the number of jobs placed at each end of
the partial permutation that is evaluated. 14][several techniques are proposed to reduce the threadydives
related to these control ow instructions. These optimizas are taken into account in the procedtomputelL B
which returns a lower bound (LB) value for a subproblem pdediin the forn2/13/4(schedule2134 limit1=0,
limit2=3).
The granularity in this kernel is the computation of one hibhuricach active thread in this kernel generates a
distinct subproblem from the father node and computes Wt®idound. These lower bound values are stored
and atomically added to the valusgmBegin andsumEnd, which are used to decide which decomposition is
retained. For each father subproblem of deptthe lower bounds for 2 (N 1) =2 (limit2 limitl 1)
children are computed. The father-children relation areditbunding procedure are illustrated in FigéreThe
number of active threads in the bounding kernel is therejoren by

#YM
2 todo=2 Q (#jobs linefivm]) 2 #VM N:

ivm, 0

At a given iteration, this quantity depends unpredictabiytiee number of non-empty IVMs and on their depth in
the B&B tree. The maximum 2 #IVM N occurs in the case where all IVMs have non-empty intervalewat
0. Each thread that computes a lower bound must be provigehliowing information: (1) on which IVM it is

11



working, (2) which unscheduled job it is scheduling and (@)dhat end of the partial permutation to schedule.

A static mapping of threads onto potentially generatedicéit nodes (thus launching 2VM  #jobsthreads at
each invocation) is possible. As this mapping is criticakf@ performance of the bounding kernel, and thus for the
entire algorithm, a remapping phase should precede thegalf the bounding kernel. Building such a mapping
generates extra overhead which must be kept low. The mappohgnplementation details of the bounding kernel
are further discussed in Sectidn

3.3.5. kerneprune

In a rst step the pruning kernel compares the valses\BegirandsumEndor each IVM. Depending on this
comparison it uses the set of lower boumdstBeginor costEndto perform the pruning of nodes. The pruning
itself consists in multiplying the corresponding cell iretiatrix by 1 if the associated lower bound is greater
than the best found solution so far. This kernel is the coatprially less intensive one.

4. Mapping and thread divergence reduction

The shape of the tree explored by a B&B algorithm is highlegular and unpredictable, resulting in an
irregular workload, irregular control ow and irregular mery access pattern. If not addressed properly, these
irregularities may cause a low occupancy of the deviceabeeid execution of instructions and poor bandwidth
usage due to uncoalesced memory accesses. Both, the &pplicenemory access pattern and the divergent
behaviour of threads depend strongly on the chosen mappitgeads onto the data. When a GPU application
runs, each streaming multiprocessor (SM) is assigned omeooe thread block(s) to execute. Those threads
are partitioned into groups of 32 threddsalled warps, which are scheduled for execution. CUDAwy -
instruction multiple-thread (SIMT) execution model asssnthat a warp executes one common instruction at a
time. Consequently, full ef ciency is realized when all 32¢ads of a warp agree on their execution path. However,
if threads of a warp diverge via a data-dependent conditimr@ach, the warp serially executes each branch path
taken. Threads that are not on that path are disabled, and athpaths complete, the threads converge back
to the same execution path. This phenomenon is called thiigathence and often causes serious performance
degradations. In a very similar way, if the threads in a wayea on the location of a requested piece of data, it
may be fetched in single cycle, otherwise serializatiorhefdata accesses occurs. In this paper the focus is put
on reducing thread divergence and increasing warp execeticiency by making judicious mapping choices. In
Subsectiort.1 two different mapping strategies for the bounding kernel@iesented. Subsectidi? discusses
how to reduce the overhead induced by the building of the ingpFinally,4.3 presents alternative mappings for
the IVM management kernels where the number of conditiarsfuctions is very high.

4.1. Mapping the bounding operation

The most straightforward approach probably consists inpimgpeach thread onto a child subproblem directly
fromitsthreadld . This naive approach is shown in AlgorittdnFor instance, launching 2N #VM threads
(line 2), the rstN  #VM threads place unscheduled jobs in the beginning, the sed¢orV M threads in the
end. Regardless of the IVM's state or current depth in the,tBe N threads are reserved for each IVM. Each
thread is assigned an IVM to work on and a job to scheduleslia@vn in lines 4-6 of Algorithrd. The approach
of Algorithm 4 has several disadvantages. Theonditionals in line 8 and 9 mask many of the launched ttsgad
precisely 2 k threads per father subproblem of degihplus 2N threads per empty IVM. Moreover, different
lanes in the same warp work on different IVMs, thus threaédjence occurs due to different valuediwiitl and
limit2. If T N is a multiple ofwarp-size then theif-elseconditional (lines 10 and 14) does not cause any thread
divergence.

The goal of the remapping procedure which prepares the hogirito build two mapsvym-mapandjob-map
which contain, fotodothreads, the information which IVM to work on and which jobsteap. Using an even/odd
pattern these maps provide suf cient information for botbugps of threads. After building these maps, the bound-
ing kernel (as shown in Algorithi®) is called with 2 todothreads, where:

1We assume using the GK110 model
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Algorithm 4 KemelSTATIC-MAP-BOUND Algorithm 5 KernelREMAPPED-BOUNDING

in:fathers (father,limit1,limit2) in:fathers (father,limit1,limit2), ivm-map, job-map

out:lower bounds begin, lower bounds end, sums of lower bounds out:lower bounds begin, lower bounds end, sums of lower bounds
1: procedure NAIVE-BOUND 1: procedure REMAPPED-BOUND

2 <<< 2 #jobs #VM threads>> 2: <<< 2 todothreads>>

3 thid  blockldx.x*blockDim.x + threadldx.x 3: thid  blockldx.x*blockDim.x + threadldx.x

4 if (state[ivm] == not-empty}hen 4: dir thid mod 2

5: if (limitl[ivm] < job < limit2[ivm]) then 5: ivm  ivm-maplthld/2]

6: if (dir == 0)then . evaluate begin 6: job job-maplthid/2]

7 swap( schedule, limit1[ivm]+1, job) 7. schedule fathers[ivm]

8 LB-begin[ivm][job] computeLB( schedule) 8: toSwap (1-dir)*(limit1[ivm]+1) + dir*(limit2[ivm]-1)

9: sum-begin[ivm] += LB-begin[ivm][job] . atomic 9: swap( schedule, toSwap, job )

10: else if(dir == 1) then . evaluate end 10: LBJ[dir][ivm][job] computeLB( schedule )

11: swap( schedule, limit2[ivm]-1, job ) 11: sum([dir][ivm] += LB[dir][ivm][job] . atomic
12: LB-end[ivm][job] computeLB( schedule ) 12: end procedure

13: sum-end[ivm] += LB-end[ivm][job] . atomic

14: end if

15: end if

16: end if
17: end procedure

threads 0 and 1 work on IVM/m-map[0] swapping joljob-map[0] respectively to begin/end,

threads 2 and 3 work on IVM/m-map[1] swapping jojob-map[1]respectively to begin/end,

threads 2 todo 2 and 2 todo 1 work on IVM ivm-map[todo-1]...

The remapped bounding kernel is launched at each iteraftbraiernel con guration of2 todo=blockDim)+ 1
blocks (simpli ed in Algorithm5) which is adapted to the workload. The proposed approachds/k asstream
compactionn the literature. It reduces the number of idle lanes pepwanwell as the number of threads launched
per kernel invocation. However, any thread divergenceltiagufrom the begin-end distinction should also be
avoided, as this involves a serialization of the costhynputeLB procedure. To achieve this, the bodies of the
if-else conditional (Alg. 4, lines 10 18) can be merged into a single one (Alg.lines 8 11). Two different
arguments of the same type, occurring on the right-handdfidestatement can often be refactored into a single
one, like in Algorithm5, line 8. The different arrays on the left-hand side are meiigéo larger ones. This
allows to merge the statements of lines 12,13 and 16,17 afrilgn4 into single statements (Ald, lines 10,11).
The separation of data within these merged arrays is asbyradiexing with the variabldir , which evaluates
differently for even/odd threads.

4.2. Ef cient building of the remapping

Algorithm 6 describes how to build the majsn-mapandjob-mapsequentially. However, sequential execution
of this procedure on the device has prohibitive cost, exioee?% of the total execution time. The remapping
should therefore be built in parallel. The parallelizatidithe outerfor-loop (Alg. 6, line 3) is not straightforward,
because it is unknown at which location the data for each I8tbibe written to. Computing there x-sumof a
vector containing the number of jobs to be scheduled per NIbWa its parallelization.

The operatiorpre x-sumis de ned as

prefix sum: [ap a1 ay i an]7! [0 a (agp+a) (apg+ai+ay) : é al:

Ef cient parallel CUDA-implementations for this operatidhave been proposed in the literatu2g][ It is also
available in the CUDA Thrust library. However, for relatiyesmall vectors it may be preferable to reimplement

the operation, in order to avoid casting the input datattorast::device _ptr .
A rst building step consists in lling an arrayodo-per-IVM  with limit2 limitl 1 for each IVM. The
elemenR of prefix-sum(todo-per-1VM) indicates at which position é¢m-map andjob-map the data

of an IVM R starts to be written. The complete parallelized buildinghef mapping is shown in Algorithm The
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Algorithm 6 Build mapping (serial) Algorithm 7 Build mapping (parallel)

1: procedure SERIAL PREPARE BOUND 1: for all (non-empty ivm)do

2: running-index 0 2:  todo-perfivm]  (limit2[ivm]-limit1[ivm]-1) .else 0
3:  for ivm=0! T))do 3: end for

4: if (state[ivm] = not-emptyj}hen 4: Aux  parallel-pre x-sum(todo-per)

5: for (job = limitl[ivm] + 1 ! limit2[ivm]) do 5: prepare-bounck< #IVM #JOBS>>>

6: ivm-map[running-index] ivm 6: procedure [KERNEL] PREPAREBOUND

7. job-mapl[running-index] job 7. thid  blockldx.x*blockDim.x + threadldx.x

8: running-index++ 8: ivm  thid/N

9: end for 9: thPos thid % N

10: end if 10: if (thPos< todo-per[ivm])then

11: end for 11: ivm-map[Aux[ivm]+thPos] ivm

12: todo  running-index 12: job-map[Aux[ivm]+thPos]  limitl[ivm]+1+thPos
13: end procedure 13:  endif

14:  todo Aux[#IVM]+todo-per[#IVM]
15: end procedure

Algorithm 8 Mapping 1 Algorithm 9 Mapping 2
1: kernel<<< #IVM threads>> 1: kernel<<< warpsize #IVM threads>>
2: ivm  blockldx.x*blockDim.x + threadldx.x 2: thid  blockldx.x*blockDim.x + threadldx.x
3: do-something-with[ivm] 3: ivm thld/32
4: thPos thld%32
5: if (thPos == Othen
6: do-something-with[ivm]
7: endif

building of the mapping ranges over several kernels. Thaglbftodo-per-IVM  can be done, for instance, in
the decode-kernel.

4.3. Mapping choices for IVM management kernels

The IVM-management kernethare , goToNext , decode andprune require a single thread per IVM.
The naive approach consists in launchihghreads and mapping thre&n IVM k, for k= 0;1;:::;T 1 (see
Algorithm 8). Given the high number of conditional instructions in th@-management kernels it is very unlikely
that all 32 threads in a warp follow the same execution patfisfmapping is used. Indeed, in these kernels control
ow divergence results from different IVM-states, differenumbers of scheduled jobs at both ends of the active
subproblem and from the search for the next node which regain unknown number of iterations.

An alternative mapping, shown in Algorith@ can solve this issue. An entire warp is assigned to each BoM,
all threads belonging to the same warp follow the same eda@tpath. This strategy goes in the opposite direction
of the stream compaction approach proposed for the bourkeimgl. As only one thread per IVM is needed, all
lanes in a warp except this rst are masked. Thus, the keareltaunched with 32 as many threads as necessary
(i.,e. 32 T). Using this mapping, the overhead induced by thread demce completely disappears (although
technically, the disabled threads are diverging at line Blgbrithm 9). The drawback is obviously the launching
of 31T idle threads. However, in Subsecti®r2 we argued thal should be chosen arouid= 1000, which is
small compared to #SM(max. threads per SM). This, and the fact that the control ioegularity is very high,
justi es the approach of using 1 warp per IVM. Moreover, usonly 4-8 IVM-structures per block allows to store
them into shared memory without limiting the theoreticatwgancy of the device. The loading of data from global
to shared memory can be done very ef ciently, using the aoldlitl threads which are not used for computation.

4.4. Work stealing strategies

The topology used in the WS strategy described in Subse8t®is a unidirectional 1-dimensional ring (1D-
ring). The maximal distance between two IVMs in the 1D-rig@ i Work units propagate through the ring as they
are passed downstream from exploring to empty IVMs. As miatsteoexplored B&B nodes are actually contained
in a relatively small interval, the workload tends to be camtcated in some part of the ring. Thus, workers situated
far away from the source are only kept busy if the overall i@al is large enough. With an increasing number
of IVM structures it becomes more likely that no work is drifpgp down to some of the workers. A topology that
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Figure 7: lllustration of 2D-ring topology foF 1IVMs using R rings of ring-sizeC.

reduces the maximum distance between two workers shouleftite improve the scaling with.

The 1D-ring can be easily generalized to a 2D-ring, or taysplogy. Instead of using a single ring, IVMs are
arranged irR rings of ring-sizeC = T=R. In a rst step each empty IVM attempts to steal from its lefighbour
within the same ring. A second step connects the rings betwaeh other: each empty IVM selects the IVM
with the corresponding ID in the preceding ring (with riRg 1 being Connectﬁd_to ring 0). The roles played by
both directions are symmetric. Ideally, the numBas therefore such tha& = = T, which is only possible iff
is square. In that case the 2D-ring reduces the maximunmdistaetween two IVMs to 2 T. If C, R, then the
diameter of the 2D-ring i€C+ R).

The 2D-ring topology is implemented by two subsequent aallkernelshare (Algorithm 2), where only
line 4 of the algorithm needs to be modi ed. In particulamdi4 of Algorithm2 is replaced by the following.

¢

In Step 1 IVMi selectsvictim(i) = L ifimodC, 0

i+(C 1); otherwise

. H H >
In Step 2 IVMi selectsvictim(i) = c ) i (C? 2
(R 1)C+i; otherwise
Figure7 illustrates the 2D-ring topology in the form of a 2D-grid. értis, used in the 2D-ring WS strategy is
obtained by connecting the upper with the lower and the le$trwith the rightmost cells. Similarly, the topology
can be extended to a hypercube, which is used for instan@djifidr unbalanced tree search.

5. Experiments

In this section the performance of the IVM-based GPU-B&B rslgised for different mapping choices, a
varying number of IVM structures and different work steglisirategies. Subsectidnl explains the owshop
scheduling problem, the problem instances used for bendtingeand the hardware test-bed. In Subsecbdh
the mapping strategies for the bounding kernel are evaluiaid Subsectiof.4 compares the different mapping
strategies for the pool management kernels. The algortiscalability and load balancing issues are examined
in Subsectiorb.5. Finally, our IVM-based GPU-B&B algorithm is compared tetBPU-accelerated linked-list
based algorithm presented il [

5.1. Flowshop scheduling problem

Flowshop belongs to the category of scheduling problemsh&duling problem is de ned by a set of jobs and
resources. Flowshop is a multi-operation problem, whech eaeration is the execution of a job on a machine. In
this problem, the resources are machines in a productioksiop. The machines are arranged in a certain order.
As illustrated in the example of Figu& the machines process jobs according to the chain produgtiaciple.
Thus, a machine can start processing only those jobs whighdampleted processing on all the machines which
are located upstream. A duration is associated with eaafatipe. This duration is the time required for a machine
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Figure 8: Example of a solution of a owshop problem instadeened by 6 jobs and 3 machines.

to nish the processing of a job. An operation can not be intpted, and machines are critical resources, because
a machine processes one job at a time. Mag&esparf a solution corresponds to the time when the last job ends
on the last machine. The objective is to nd a solution thanimizes themakespanin [25], it is shown that the
minimization ofmakespaiis NP-hard from 3 machines upwards.

In our experiments, the owshop instances de ned by Tadl$§26] are used to validate our approach. These
instances are divided into 12 groups:x8Qi.e. group of instances de ned by 20 jobs and 5 machine&1@,
20x20, 505, 5x10, 5020, 105, 10010, 106x20, 20010, 20020, and 50820. In each group, 10 different
instances are generated. For each instance, the durateachbfjob on each machine is randomly generated by
[2€6]. These standard instances are often used in the litertateraluate the performance of methods that minimize
the makespan. The instances of the 6 groups where the nuripachines is equal to 5 or 10 (i.e. ) 210,
50x5, 5x10, 10(5, 10«10, and 20R10) are easy to solve. For these instances, the used bowkngtor gives
such good lower bounds that it is possible to solve them indegonds using a sequential B&B. Instances where
the number of jobs is equal to 50, 100, 200, or 500, and the eunfbmachines is equal to 20 (i.e.>X&D, 1020,
200x20, and 50820) are very hard to solve. For example, the resolutiomaif56 in [13], which is one of the
10 instances de ned with 50 jobs and 20 machines (i.e. the®@roup), lasted 25 days with an average of 328
processors and a cumulative computation time of about 2&yd@aerefore, in our experiments, the validation is
performed using the 10 instances where the number of mashime the number of jobs are equal to 20 which
belong to the group 2&0.

When an instance is solved twice using a B&B performing alfEnaee exploration, the number of explored
subproblems is often different between the two resolutibesause the order of exploration varies. To compare
the performance of two B&B algorithms, the number of expibsabproblems should be exactly the same between
the different tests. Therefore, we choose to always iiigadur B&B by the optimal solution of the instance to be
solved. This initialization ensures that the tree-shapesdwt depend on the decrease of the best solution found
so far and that the number of explored subproblems is the satmeeen the two resolutions. Taldleshows the
number of decomposed nodes during the resolution of inet&ia®2 1 Ta030initialized with the optimal solution.
This number represents the total amount of work to be donearges from 5 for the smallest to 148 million
nodes for the largest instance.

Table 1: Number of decomposed subproblems during the risolaf Taillard's instance§a021-Ta030nitialized with the optimal cost (in
millions of nodes).

Instance 21 22 23 24 25 26 27 28 29 30 Average
#Nodes (in millions) 41.4 221 140.8 40.1 414 714 571 81 6.8 1.6 431

5.2. Hardware/Experimental protocol

All the experiments are run on a computer equipped with a NXIDesla K20m GPU based on the GK110
architecture. The device is composed of 2496 CUDA coreskdpeed 705MHz). Its maximum power consump-
tion is 225W. Version 6.5.14 of the CUDA Toolkit is used. ThelCis a 8-core Sandy Bridge E5-2650 processor.
The operation system installed is a CentOS 6.5 Linux distidm. For the evaluation of the elapsed execution time
the UNIX time command is used. The duration of each CUDA-kernel and png bf the kernels is done with
thenvprof command line pro ler. In order to reduce the pro ling timeraple data was collected every 100 it-
erations of the algorithm. The chosen size for the threausics 128. The con gurable size of the device's shared
memory/L1 cache is set to 486kB for kernels exceftound , where the opposite con guration £68kB is used.

16



For the comparison of the mapping strategies the numberaaf W8M-structures is set td = 768, according to
preliminary experiments. The best mapping found in Sulizesb.3and5.4is used to determine an optimal value
for T and the better work stealing strategy in Subsechidn

5.3. Evaluation of mappings for bounding kernel
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Figure 9: Execution time for instanc@a02%1Ta030for thread-data mappingsatic (S) andremap(M) for the kernelbound .

In this subsection the two mapping schemes for the boundangek, presented in Subsectidri, are com-
pared to each other in terms of elapsed execution time ofljugitam. The rst, using the remapping shown in
Algorithm 5 is referred to agemap the second, using the static mapping of Algorithnasstatic. Figure9 shows
the total elapsed time for solving instance21-Ta030 For both mappings and for each instance it shows the
portion of time spent in the kernbbund , in the IVM-management kernelsiare , goToNext , decode and
prune ) as well as in the remapping phase (femap. However, as the building of the mapping consumes only
0:9% of computation time, the latter portion is barely visiltld-igure9. Table2 shows total elapsed time as well
as the time spent in the different phases of the algorithrmawerage over the 10 instanceg21-Ta030

The compacted mappirrgmapis clearly advantageous as it reduces the average time ispetoound kernel

by a factor 19. As the bounding operation amounts for more than 80% ofdts €xecution time, the latter de-
creases by a factor . The overhead induced by compacting the mapping at eaeltidte is largely compensated
by these performance gains. Indeed, thanks to the paraliieln of this phase using the parallel pre x sum, the
remapping operation amounts for less than 1% of the elapsed For comparison, using the CPU for the remap-
ping, it amounts for about 7% of the algorithm's total exéautime, mainly because of the transfer of the maps
back to the device.

Using the more compact mappingmapinstead ofstaticimproves the control ow ef ciency (CFE) of the
kernel. Forstaticthe average CFE is:83, meaning that for an executed instruction on average iheie half

Table 2: Average elapsed time (in seconds) and averagetitigpanf execution time among bounding, IVM management egmapping
phases. Average taken over instanta821Ta030

elapsed walltime bound manage remap
Mapping sec sec % sec % sec %
static 696.4 6329 894 635 106 0.0 0.0
remap 395.7 329.1 820 634 171 34 0.9

2 _ not _predicated _off _thread _inst _executed
de ned asCFE = 32xinst _executed 17
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Figure 10: Execution time for instanc&a02+Ta030for different mapping choices in IVM-management kernels.

Table 3: Duration of different kernels per call (msec or msec), percentage of total elapsed time (%) and atistnureplay overhead (IRO%),
total execution time of GPU-B&B. Average values for instesita02:Ta030

Mapping goToNext decode bound elapsed
nsec % IRO% msec %  IRO% msec % sec
1 thread/IVM 380 10.0 40.6 168 4.4 40.3 3.07 82.0 395.7
1 warp/IVM 130 4.0 14.0 94 2.8 14.7 3.07 91.1 364.2
1 warp/IVM (shared) 85 2.6 7.9 79 2.4 12.4 3.06 925 356.6

of the execution slots are wasted. For the mappémgapthe average CFE is.83 - the launched warps are used
almost twice as ef ciently. The number of warps launchedaattekernel call is 960 for mappirsgatic, which ex-
ceeds theoretical maximum of 134 = 832 resident warps for the K20m. The average number of warpehed
with mappingremapis 300 (average per kernel call and per instance), the azemagimum (per instance) being
825 warps and the minimum 4. These results show that it iskagiigrity optimization to adapt the con guration
of the algorithm'’s most cost intensive part to the varyingkload.

5.4. Mapping for IVM management

In this subsection the two mapping schemes presented ireSiitns4.3 are evaluated and compared to each
other. The kernels concerned by these mapping schemesdidMhmanagement kernelslfare , goToNext ,
decode andprune ). Figurel0shows the time spent for completing the exploration witthboapping schemes.
Both, versiorone-thread-per-IVMM1) and versiorone-warp-per-IVMM?2) use the same bounding kernel (with
remapping). Although the time spent managing the IVM sticed is moderate compared to the bounding opera-
tion, the mappindV2 allows a reduction of the total execution time by a factdrdompared to the mappirig1.
With respect taVl1, mappingM2 decreases the share of IVM-management operations frontd 8%%. Table3
shows the average duration per call of the kerbelsnd (in msec),goToNext anddecode (in nsec) and their
respective share of the elapsed time (in %). The keqelee andshare amount for at less than 2% of total
execution time, so they are not evaluated.

The mappingM2 allows to use the supplementary lanes for ef cient loadifithe IVM structures into shared
memory. In order to dissociate the impact of shared memageaifrom the impact of remapping, the pro ling of
mappingM2 is performed with and without shared memory usage.

Table3 also shows the instruction replay overhead (IR&%ich is a measure for instruction serialization (due

3 — instructions _issued instructions _executed
de ned asIRO% = 100% instructions "]s_%ued



Table 4: Per-call average of branch instructions executeiddaverging branches (incremented by one per branch eealwtifferently across a
warp). Instancda022

kernel goToNext decode share prune
mapping branch diverge branch  diverge branch  diverge branch  diverg
1thread/IVM (M1) 11592 802 5875 860 851 15 404 121
1 warp/IVM (M2) 59921 1536 62020 768 3655 0 3131 768
=2 #IVM =#IVM =#IVM

to memory operations only). These results show that theofegppacing the mapping to 1 waxfd IVM also sub-
stantially improves the memory access pattern. It shoulddied that the metricontrol ow ef ciency, used in
Subsectiorb.3drops from a poor averaged? forM1 to 003 1=32 forM2 - as intended. Tabkshows, for the
different kernels, the number of branch instructions et@tper call average) and the number of branches that
are evaluated differently across a warp. The results shatydlk intended, undesired thread divergence completely
disappears. Only instanda022is evaluated as one instance suf ciently illustrates thieavéour.

Thedivergent _branch counter indicates that the average number of divergingdesis a multiple of the
number of IVMs. Indeed, the counter increments by one atrietctionif(thld%32 == 0) (Algorithm 9,

line 5) which masks all but the leading thread in each warpwél@r, as the remaining 31 lanes of the warp are
simply waiting for lane 0 to complete, no signi cant sermtion of instructions occurs. Besides showing that
the spaced mapping?2 is better adapted to the IVM-management kernels, theteggidsented in this subsection
illustrate that performance metrics for thread divergesrasontrol ow must be interpreted very carefully.

5.5. Scalability and stability analysis

Table 5: Groups of similar-sized owshop instances (20 job20 machines) and the corresponding average number of nedesngosed
when initialized with the optimal solution.

Instance group  #decomposed nodes Instances Average #olesednodes
small < 10M Ta028Ta029Ta030 5:5M
medium 2 [10M;50M] Ta021Ta022Ta024Ta025 36:3M
large 2 [50M;100M] Ta026Ta027 64:3M
huge > 100M Ta023 1408M

In this subsection the behavior of the algorithm accordmghe instance sizes and its scalability with the
number of used IVM structure ] is examined. The algorithm's performance for problemanses of different
sizes is compared in terms of node processing speed (#deseehpodes/second), which is computed from wall-
clock time. Obviously, using more explorers can only be baakif they can be supplied with enough work.
Therefore, the relationship between instance-size, tlie poocessing speed amdneeds to be studied for both
proposed WS strategies, as they strongly impact this oglshiip. For the experimental study of scalability only
the best version of the previous subsection is considemdttie one using parallel remapping for the bounding
kernel and the spaced mappiM@ for the management kernels. Another factor that has a sagrtimpact on the
algorithm's performance is the irregularity of the expldi®&B tree, which is very hard to quantify. In order to
obtain a clearer dissociation between tree-size and tregtilarity, the average node processing speed for insanc
of similar size is considered. The instances have been grbap shown in Tablg

Figure11 shows the average node processing speed for these foursgubinstances, according to different
values ofT and WS strategies 1D-Ring and 2D-Ringis chosen as a multiple of 64, as the GK110 architecture
allows up to 64 warps per SM and the management kernels eesap/warp per VM. The number of ringsin
the 2D-Ring WS strategy is chosen such tRalividesT while being as close to T as possible — the goal being
to approach the ideal con guration wheReequals the ring-siz€.

From Figurell one can see that the node processing speeshfiail instances is lower than for intermediate-
sized instances, regardless of parameéter the used WS strategy. This is partially due to warm-up &uod-down
phases of the parallel exploration, which, $onallinstances last relatively long with respect to the totalesgiion
time. In these phases a low overall workload limits the degfgoarallelism and the WS mechanism must handle
sharp variations of the workload. Using the 2D-Ring topgls@ni cantly improves the nodes-per-second rate
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Figure 11: Average node processing speed for groups ofhiossasmall medium large, huge(Table5), andT = k 256 (k= 1;2;:::;6).
Left 1D-Ring work stealing Right 2D-Ring work stealing with dimensio® C= 16 16,16 32,24 32,32 32,32 40and 32 48

decomposed node
) o iterations #IVM ) -
ef ciency of 1 indicates that each IVM decomposes a node el éaration.

Figure 12:*IVM-ef ciency= Theasures the overall share of IVM structures indgkploringstate. An VM-

for smallinstances, as the reduced diameter of the 2D-Ring acoetaited distribution of the workload. Another
reason for the poorer performancesmallis that the ner granularity of allocated tasks per IVM doex allow
one to hide the initialization costs as ef ciently as in largnstances. Similarly, the nodes-per-second perforeanc
for mediuminstances is below the performanceliange andhugeinstances. As the grouperge andhugedo only
count one, respectively two members, the results for thesepg must be interpreted more carefully — however,
they suggest that the node processing speed for large ofargeyinstances is less in uenced by the tree's size.
The size of the instance also impacts the scalability of thershm with T, especially when the 2D-ring WS
strategy is used. Using the 2D-Ring topology,$araltsized problems the best value fbimproves performance
to 120k nodes/sec from 85k nodes/sec for the wor$t, while for large-sized problems the node processing
speed doubles from 105to 210k nodes/sec, doing the same comparison.

Comparing both WS strategies, one can see from Fifjlithat the 2D-ring topology improves the scalability
of the algorithm. Indeed, for the 1D-Ring almost no perfongceis gained abové = 768 because additional
workers are left idle or inef ciently initializing. In comést, the 2D-Ring strategy allows one to use up to 1280
IVMs ef ciently. For T = 1536, and only when using the 2D-Ring WS strategy, perfooealnops signi cantly
for all instance sizes. The most likely explanation for fesformance drop is that the computation of the bounds
is partially serialized due to hardware limitations. Onrage, each node decomposition leads to the evaluation
of approximately 20 bounds, for all considered instanzessi So, if alllT = 1280 IVMs are busy, 25600 bounds
are evaluated per average iteration, which is close to thetaae limit of 26624 concurrent threads (13 SN64
warps/SM 32 threads/warp) for the GK110 architecture. Thereforppssing a well balanced workload, no
performance improvement can be expected from incredsiogyond 1280 on this device and at constant tree-size

However, Figurel2 shows that there is some margin left to increase the pememtibusy explorers. In
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Figure 13: Scaling with T of the medium-sized instances

order to measure the overall ef ciency of the WS strategtes, number of decomposed nodes is divided by
(#iterations #IVM), which gives a measure for the portion of IVMs doing mewgful work. If thisIVM-ef ciency
equals 1, then each IVM decomposes a node at each iteratfoib equals 0, then all IVMs remain idle for an
in nity of iterations. An IVM-ef ciency of 0:5 indicates that an average IVM spends half of its iteratiiolhes
or initializing. The results shown in Figurg2 con rm that the 2D-Ring WS allows to keep more explorers
busy. Moreover, the fact that d = 1536 no sharp degradation of the IVM-ef ciency occurs, cons that
the performance drop &t = 1536 is due to hardware limitations. One can also see in Eigathat for small
andmediuminstances the IVM-ef ciency is lower than for larger instas. This explains the relatively poorer
performances for these instances. The smaller the instaing solved, the likelier it becomes that a given IVM
frequently steals intervals that are explored within a feweayo iterations. In that case, the cost of initializatien i
not covered by meaningful work. Without aaypriori knowledge concerning the amount of work contained in a
given interval, it seems dif cult to resolve this problem.

Concerning the algorithm's sensitivity towards the irriegity of the tree structure, the performances obtained
when solving same-sized instances are compared in FiRiredFigure 13 zooms on the scalability witi of
the three instances with 40M nodes. For all three instances the performance drogasang the number of
IVMs from T = 1280 toT = 1536 is clearly visible. Figur&3 also shows that the instance-irregularity impacts
performance signi cantly. Exploring a roughly equal numbénodes, the peak node processing speed attained for
instancera024is 202k nodes/sec while it remains below 175k nodes/sea$tainceda021landTa025 However,
in sequential executioma024has the best nodes-per-second rate of these three instaritek means that the
performance gap is not due to a higher number of nodes in therypart of the tree (which are more costly
to evaluate). The performance variety under same-sizadnoss rather seems to be due to sharper workload
variations for instance$a021andTa025 Although for the three instances the proposed 2D-Rindegyescales
nicely up to 1280 IVM structures, it apparently has a moménmnertia which makes the algorithm sensitive to
rapid workload variations. Maybe this gap can be closed witlrther improved WS strategy, in the sense that the
WS strategy should deliver a faster response to those iarsatThis is a dif cult task, in particular because IVM
need to go through initialization after the reception of evmeork unit.

5.6. Comparison with GPU-accelerated linked-list-bas&®BB

In this subsection the best version (according to the prsvexperimentations) of the IVM-based GPU-B&B
is compared to the GPU-accelerated B&B presented]invhich uses a conventional linked-list for the storage
and management of the pool of subproblems. The linkedsised GPU-B&B (GPU-LL) algorithm is described
in Subsectiorl.3 Like the IVM-based GPU-B&B, GPU-LL performs a depth- re¢@ch, retaining after each
branching the better of two generated pools (as describ&dlisectiorl.l). Moreover, both algorithms use the
same device function to compute the lower bounds for a givbp®blem. Tablé shows the elapsed time for
solving each of the ten 20-job instances, as well as the nuwieecomposed nodes per second, in order to
take into account the size of the instances. The averagesiimet by the IVM-based GPU-B&B for exploring
the ten instances is 22Bseconds, while the GPU-LL algorithm requires on average@geconds for the same
tasks. In terms of node processing speed, the GPU-IVM dlgordecomposes on averag8 §imes more nodes
per second than its linked-list counterpart. The IVM-ba&#lJ-B&B outperforms GPU-LL by at least a factor
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Table 6: Elapsed execution time and number of decomposegsat second (in 1000 nodes/sec) for the IVM-based GPU-B3B-IVM)
and the GPU-accelerated linked-list-based B&B(GPU-LL), described in Subsectidh3. The GPU-IVM algorithm uses the 2D-ring work
stealing strategy antl = 1280 IVMs for all instances. Results for instande®)21Ta030

GPU-LL GPU-IVM
Instance elapsed  knodes/sec elapsed  k nodesfseatio
21 833 49.7 242 171.1 3.4
22 415 53.3 134 163.6 31
23 3089 45.6 740 189.6 4.2
24 738 54.3 200 202.2 3.7
25 865 47.9 239 173.1 3.6
26 1292 55.3 348 205.6 3.7
27 1094 52.2 268 213.3 4.1
28 171 47.4 53 152.0 3.2
29 125 54.4 56 121.4 2.2
30 34 47.1 17 94.6 2.0
Average 865.6 50.7 229.7 168.6 3.3

2 for all ten instances. The highest nodes-per-second npeaftce is attained for instanda027 decomposing
213,000 nodes/sec, which is almost 4 times more than the higatesattained by the linked-list-based algorithm.
As examined in Subsectidn5, for the GPU-IVM algorithm the node processing speed vdrim® one instance

to another, depending on the instance's size and irregyldmicontrast, as the GPU-LL algorithm regularizes the
workload by dynamically adapting the size of the of oaded|sdt provides an almost constant node processing
speed for all instances. This performance variety is dsedisn Subsectiob.5 — while further improved WS
strategies should allow to reach a higher node processiegdsfor small instances, the algorithm needs to be
extended a to a multi-GPU version in order to improve thegrerfince for larger instances.

6. Conclusions and future work

Our paper proposes a GPU-based branch-and-bound (B&BlJgdalgorithm which performs all B&B oper-
ators on the GPU. During the exploration of the B&B-tree thiUds only used for launching the CUDA-kernels
in a loop until a boolean variable, which the CPU receivesaahdteration from the GPU, indicates the end of
the algorithm. To the best of our knowledge, our GPU-base® Bdgorithm is the rst one that does not rely
on the transfer of pools of subproblems between host and@eleVhe proposed approach is based on the Integer-
Vector-Matrix (IVM) data structure, better adapted to thelGthan linked-list-based data structures, which are
conventionally used for the storage and management of thiegbsubproblems. The algorithm has two levels of
parallelism. On a lower level it ef ciently uses up to 1280NMstructures to perform the branching, selection and
pruning operators in parallel, exploring different partshe B&B tree simultaneously. For each exploring IVM
the bounding operator is in turn parallelized, leading tan@neased overall degree of parallelism in the bounding
phase. At the junction of the two levels a remapping phaggrisduced in order to adapt the con guration and the
mapping of the bounding kernel to the varying workload. While mapping for the bounding is compacted, the
mapping in the management phase — characterized by a vérnhigber of data-dependent conditional instruc-
tions — is spaced, adding idle threads to the kernel. As diyéset bounding phase is accelerated on the one hand,
as the control ow ef ciency is improved — on the other handthe IVM-management phase the opposed strategy
is better adapted, as it reduces thread divergence andvegneemory accesses.

We have proposed two work stealing strategies for work la@drzing and analyzed the scalability of our algo-
rithm with respect to both strategies. The reported expemial results show that the performance of the proposed
algorithm depends crucially on the choice of the mappingyvel as on the used work stealing strategy. The
proposed GPU-IVM algorithm explores the B&B-trees of 10l[@ail's owshop instancesla021-Ta03®mn av-
erage with a 38 times higher node processing speed than a GPU-acceldirdted-list-based B&B (GPU-LL)
algorithm. For all instanceBa021-Ta03@he GPU-IVM algorithm outperforms the GPU-LL algorithm aakt by

a factor 20 and by up to a factor:@ on large instances, where our GPU-IVM algorithm reachebétst perfor-
mances.

As a future work we plan to investigate other work stealimgtsgies for the IVM-based GPU-B&B algorithm.
We also plan to extend our algorithm to a multi-GPU and to aridymmulti-core/multi-GPU Branch-and-Bound
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algorithm capable of solving large instances of permutabiased combinatorial problems.
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