
�>���G �A�/�, �?���H�@�y�R�j�3�N�9�d�R

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�j�3�N�9�d�R

�a�m�#�K�B�i�i�2�/ �Q�M �k�3 �P�+�i �k�y�R�e

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�� �:�S�l�@�#���b�2�/ �"�`���M�+�?�@���M�/�@�"�Q�m�M�/ ���H�;�Q�`�B�i�?�K �m�b�B�M�;
�A�M�i�2�;�2�`�@�o�2�+�i�Q�`�@�J���i�`�B�t �/���i�� �b�i�`�m�+�i�m�`�2

�C���M �:�K�v�b�- �J�Q�?���M�/ �J�2�x�K���x�- �L�Q�m�`�2�/�B�M�2 �J�2�H���#�- �.���M�B�2�H �h�m�v�i�i�2�M�b

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�C���M �:�K�v�b�- �J�Q�?���M�/ �J�2�x�K���x�- �L�Q�m�`�2�/�B�M�2 �J�2�H���#�- �.���M�B�2�H �h�m�v�i�i�2�M�b�X �� �:�S�l�@�#���b�2�/ �"�`���M�+�?�@���M�/�@�"�Q�m�M�/
���H�;�Q�`�B�i�?�K �m�b�B�M�; �A�M�i�2�;�2�`�@�o�2�+�i�Q�`�@�J���i�`�B�t �/���i�� �b�i�`�m�+�i�m�`�2�X �S���`���H�H�2�H �*�Q�K�T�m�i�B�M�;�- �k�y�R�e�- �S���`���H�H�2�H �*�Q�K�T�m�i�B�M�;�-
�8�N�- �T�T�X�R�R�N�@�R�j�N�X ���R�y�X�R�y�R�e�f�D�X�T���`�+�Q�X�k�y�R�e�X�y�R�X�y�y�3���X ���?���H�@�y�R�j�3�N�9�d�R��

https://hal.inria.fr/hal-01389471
https://hal.archives-ouvertes.fr

A GPU-based Branch-and-Bound algorithm using Integer-Vector-Matrix data
structure

J. Gmys2, M. Mezmaz2, N. Melab1 and D. Tuyttens2

1 INRIA Lille Nord Europe, Université Lille 1, CNRS/LIFL, Cité scienti�que - 59655, Villeneuve d'Ascq cedex, France
2Mathematics and Operational Research Department (MARO), University of Mons, Belgium

Abstract

Branch-and-Bound (B&B) algorithms are tree-based exploratory methods for solving combinatorial optimiza-
tion problems exactly to optimality. These problems are often large in size and known to be NP-hard to solve. The
construction and exploration of the B&B-tree are performedusing four operators: branching, bounding, selection
and pruning. Such algorithms are irregular which makes their parallel design and implementation on GPU chal-
lenging. Existing GPU-accelerated B&B algorithms performonly a part of the algorithm on the GPU and rely on
the transfer of pools of subproblems across the PCI Express bus to the device. To the best of our knowledge, the
algorithm presented in this paper is the �rst GPU-based B&B algorithm that performs all four operators on the de-
vice and subsequently avoids the data transfer bottleneck between CPU and GPU. The implementation on GPU is
based on the Integer-Vector-Matrix (IVM) data structure which is used instead of a conventional linked-list to store
and manage the pool of subproblems. This paper revisits the IVM-based B&B algorithm on the GPU, addressing
the irregularity of the algorithm in terms of workload, memory access patterns and control �ow. In particular, the
focus is put on reducing thread divergence by making a judicious choice for the mapping of threads onto the data.
Compared to a GPU-accelerated B&B based on a linked-list, the algorithm presented in this paper solves a set of
standard �owshop instances on average 3.3 times faster.

Keywords: GPU computing, Branch-and-Bound, Combinatorial optimization, Irregular applications

Introduction

Many industrial and economic problems, like �owshop, are permutation combinatorial optimization prob-
lems. Solving these problems consists in �nding an optimal permutation of elements among a large �nite set
of permutations. A wide range of these problems are known to be large in size and NP-hard to be solved. The
branch-and-bound (B&B) algorithm is one of the most used exact methods to solve these permutation optimization
problems. It is based on an implicit enumeration of all the feasible solutions of the problem to be tackled. Building
and exploring the B&B tree are performed using four operators: branching, bounding, selection and pruning. In
a B&B algorithm, if the lower bound for some tree node A is greater than the best solution found so far for some
other node B, then A may be discarded from the search. This keyidea of the B&B algorithm signi�cantly reduces
the number of explored nodes. However, the execution time ofa B&B signi�cantly increases with the size of the
instance, and often only small or moderately-sized instances can be practically solved. For this reason, over the last
decades, parallel computing has been revealed as an attractive way to deal with larger instances of combinatorial
optimization problems.

Because of their massive data processing capability and their remarkable cost ef�ciency, graphics processing
units (GPU) are an attractive choice for providing the computing power needed to solve such instances. While
GPU accelerators are used in today's largest high-performance computing systems, their usage is often restricted
to regular, data-parallel applications. Indeed, the irregular nature, in terms of workload, control �ow and memory
access patterns, of applications such as B&B may seriously degrade the performance of the GPU. The acceleration
of B&B algorithms using GPUs is therefore a challenging taskwhich is addressed by only a few works in the lit-
erature, such as [1], using �owshop as a test case, [2], applied to the travelling salesman problem and [3], applied
to the knapsack problem where the search tree is binary. All these approaches use linked-lists (or deques, stacks)
Preprint submitted to Elsevier October 19, 2015

to store and manage the pool of subproblems, likewise most parallel B&B algorithms in the literature. Such data
structures are very dif�cult to handle on the GPU and often induce prohibitive performance penalties. For this
reason all GPU-accelerated B&B algorithms at our knowledgeperform the management of the pool of subprob-
lems at least partially on the CPU, requiring costly data transfers between host and device. In [4] it is shown that
the bounding operator for �owshop consumes 97� 99% of the execution time of a sequential B&B and that the
GPU-based parallelization of this operator can provide a substantial acceleration of the algorithm. However, as
the management of a list of pending nodes is performed on the CPU, the transfer of data between CPU and GPU
constitutes a bottleneck for GPU-accelerated B&B algorithms.

Our parallel GPU-B&B algorithm is, to the best of our knowledge, the �rst one that implements all four B&B
operators on the GPU, requiring virtually no interaction with the CPU during the exploration process. It is based on
the Integer-Vector-Matrix (IVM) data structure, a recently developed [5] data structure which allows the ef�cient
storage and management of the pool of subproblems in permutation-based combinatorial optimization problems.
In [6] private IVM data structures and IVM-based work stealing techniques are used in a multi-core parallel B&B
algorithm. The IVM structure provides some regularizationas it allows to store and manage the pool of subprob-
lems with data structures of constant size. However, the IVM-based parallel B&B is still highly irregular in terms
of workload, control �ow and memory access patterns. None ofthese three issues can be ignored when imple-
menting the B&B algorithm on the GPU and all three are addressed in this paper. The focus is put on the reduction
of thread divergence which arises in CUDA's SIMD execution model as a consequence of control �ow irregular-
ities. For a set of �owshop problem instances that consist inscheduling 20 jobs on 20 machines our IVM-based
GPU-B&B processes on average 3:3 times as many nodes per second as the GPU-accelerated linked-list-based
(GPU-LL) B&B presented in [1].

The paper is organized in four main sections. Section1 presents the B&B algorithm in it's sequential form,
the parallelization model used in our approach and providessome more details on the GPU-LL B&B-algorithm.
Section2 explains the functioning of the Integer-Vector-Matrix (IVM) data structure which is used for the stor-
age and the management of the pool of subproblems. Section3 describes our GPU-based B&B algorithm and
Section4 proposes alternative mapping schemes for the algorithm with the aim of reducing thread divergence. In
Section5, we report the obtained experimental results, comparing the performance of different mapping schemes
and evaluating the performance of our GPU-based algorithm in comparison to a GPU-accelerated linked-list based
B&B. Moreover, the scalability of our algorithm is analyzed, considering two different work stealing strategies.
The stability of our algorithm towards instances of different size and irregularity is as well investigated. The paper
ends with the conclusions drawn from this work and its perspectives.

1. Parallel branch-and-bound algorithms

This section presents the B&B algorithm and its parallelization using different models. The focus is put on the
parallel tree exploration model and the parallel evaluation of bounds model which are used in our GPU IVM-based
B&B.

1.1. Sequential branch-and-bound

Several exact resolution methods used in combinatorial optimization are branch-and-bound (B&B) like algo-
rithms. These methods are mainly divided into three basic variants: simple B&B, branch-and-cut (B&C), and
branch-and-price (B&P). There are other B&B variants less known such as branch-and-peg [7], branch-and-win
[8], and branch-and-cut-and-solve [9]. This list is certainly not exhaustive. It is also possibleto consider a divide-
and-conquer algorithm as a B&B algorithm. It is enough to remove the pruning operator from the B&B to get a
divide-and-conquer algorithm. Some authors consider B&C,B&P, and the other variants as different algorithms
than B&B. These authors use B&X to refer to algorithms like B&B, B&C, B&P, etc. In what follows, B&B
algorithm refers to simple B&B or any other variant of this algorithm.

B&B is based on an implicit enumeration of all the solutions of the problem being solved. The space of
potential solutions (search space) is explored by dynamically building a tree where, theroot node represents the
initial problem to be solved, theleaf nodesare the possible solutions and theinternal nodes are subspaces of
the total search space. Possible solutions are fullN-element permutations, like2134for N = 4. In practice, a
solution often corresponds to a scheduling of jobs. Internal nodes can be seen as a partial permutations, consisting

2

of scheduled and unscheduled jobs. For instance, we will denote2/13/4the subproblem where jobs 1 and 3 are
unscheduled while 2 is scheduled in the beginning and 4 is scheduled in the end. The subspace2/13/4contains
solutions2134and 2314, so, closer to the leaves the size of the subspaces is smallerand smaller. Using this
notation, the initial problem writes/1234/. The construction of such a tree and its exploration are performed using
four operators: branching, bounding, selection and pruning. B&B proceeds in several iterations where the best
solution found so far is saved and can be improved from an iteration to another. All subproblems generated and not
yet processed are kept in a data structure, for example a linked-list. At the beginning, this data structure contains
the initial problem. Then, at each iteration of the algorithm:

� Thebranching operator partitions a subproblem into several smaller, pairwise disjoint subproblems. For
instance, a subproblem withk unscheduled jobs can be decomposed intok subproblems by �xing each
unscheduled job either in the beginning or in the end. The generated subproblems are then inserted into the
data structure, according to the semantics of the latter.

� Thebounding operator is used to compute a bound value of the optimal solution of each generated sub-
problem.

� And thepruning operator uses this bound to decide whether to eliminate a subproblem or to continue its
exploration.

� Theselection operatorchooses one subproblem among all pending subproblems stored in the data structure
according to an exploration strategy. The selection of a subproblem could be based on its depth in the B&B
tree which leads to a depth-�rst exploration strategy. In this paper only thedepth-�rst strategyis used.

The branching of a subproblem may consist in placing unscheduled jobs either in the beginning (before the �rst
“=”) or in the end (after the second “=”). The choice of the branching rule has an impact on the size of the explored
tree. It is possible to take advantage of this by choosing at each iteration the “better” decomposition, according to
some heuristic criterion. In our approach both sets of subproblems are generated and evaluated at each iteration,
but only the decomposition for which the sum of lower bounds is greater is retained. Indeed, the retained set is
likely to contain more subproblems to be pruned, because theaverage lower bound in this set is greater than in the
other set. This branching rule aims at reducing the tree sizemore ef�ciently (at the expense computing twice as
many bound values per decomposed node).

1.2. Parallel branch-and-bound models

B&B algorithms can signi�cantly reduce the computing powerneeded to explore the whole solution space.
However, such power may still be huge, especially when solving large instances. Using many processors or cores
in parallel is an effective way to reduce the exploration time. Many approaches to parallelize B&B algorithms are
proposed in the literature. A taxonomy of these models is presented in [10]. This taxonomy is based on the clas-
si�cations proposed in [11] and [12]. Four models are identi�ed: the multi-parametric parallel model, the parallel
evaluation of a bound model, the parallel evaluation of bounds model, and the parallel tree exploration model. This
paper focuses on the latter two as our GPU-based B&B is based on a combination of these two models.

Theparallel tree exploration modelconsists in simultaneously exploring several subproblemsthat de�ne dif-
ferent search subspaces of the initial problem (Figure1a). This means that the selection, branching, bounding and
pruning operators are executed in parallel, synchronouslyor asynchronously, by different B&B processes which
explore these subspaces independently. In asynchronous mode, the B&B processes communicate in an unpre-
dictable manner to exchange work units and information, such as the best solution found so far. This requires
pairwise synchronization between B&B-processes. In multi-core implementations this can be done using mutexes
and semaphores. Without such synchronization primitives,the parallel tree exploration is necessarily performed
synchronously on GPUs. In synchronous mode, a B&B algorithmhas different phases between which the B&B
processes are synchronized and may exchange information. Compared to other models, the parallel tree explo-
ration model is more frequently used and is the subject of much research. One important reason is that the degree
of parallelism of this model may be important, especially inlarge instances. Indeed, the number of parallel explo-
ration processes is only limited by the capacity to supply them continuously with subproblems to explore. This
work supply depends, on one hand, on the size of the instance being solved. On the other hand, as the B&B tree is

3

(a) Illustration of the parallel tree exploration model

Bounding
value

Node

Bounding
operator

B&B
process

(b) Illustration of the parallel evaluation of bounds model

Figure 1: Illustrations of models for parallel B&B algorithms

Nodes

Bounds

Nodes

Bounds

Nodes

Nodes

Nodes

Bounds

Bounds

Bounds

evaluate

evaluate

evaluate

evaluate

evaluate

Figure 2: Illustration of the combined parallel tree exploration/parallel evaluation of bounds model.

highly irregular, it depends on the distribution and sharing of the load, which is one of the main issues raised by this
model. Among other issues one can include the placement and management of the set of pending subproblems.
Also, the communication of the best solution found so far, the detection of the termination of the algorithm and
fault tolerance can be challenging, especially in heterogeneous environments [13]. In the case of a GPU implemen-
tation other issues arise, such as branch divergence due to control-�ow irregularities. Besides potentially yielding
a very high degree of concurrency, an important aspect of this model is that it can be combined with other parallel
B&B models. At least conceptually, each B&B process that participates in the parallel tree exploration may in turn
be parallelized, adding a second level of parallelism.

For instance, each independent B&B process may use theparallel evaluation of bounds model(Figure1b).
In this model a single B&B process is launched and the subproblems generated by the branching operator are eval-
uated in parallel. This model is well-adapted in cases wherethe cost of the bounding operator is high, compared
to the rest of the algorithm. For combinatorial problems this model's degree of parallelism depends on the depth
of the current active node in the tree. Moreover the model is data-parallel, synchronous and �ne-grained (the cost
of the evaluation of a bound) which is the execution model that better �ts many-core architectures like GPU. The
combined parallel tree exploration/parallel evaluation of bounds model(Figure2) yields a much higher degree
of parallelism than using one model alone. In synchronous execution mode the subproblems generated by all B&B
processes are evaluated in a single parallel bounding phase. When enough parallel exploration processes are used,
the number of generated subproblems per iteration approaches the maximum number of concurrent threads on the
GPU. So, it is theoretically possible to reach a very good utilization of the GPU resources. This combined model
is used in our GPU-based B&B algorithm.

4

Figure 3: An example of a pool obtained when solving a permutation problem of size 4.

1.3. Related works
In [4] the authors have investigated the bene�ts of using a GPU forthe parallelization of the bounding operator

for the �owshop scheduling problem. They have shown that parallel evaluation of subproblems on the GPU can
provide a considerable acceleration of the algorithm, as the �owshop bounding operator consumes> 97% of a the
computation time in a sequential B&B. While [4] focuses on optimizing the placements of data in the hierarchical
GPU memory, the thread divergence issue is addressed in [14]. The reduction of the overhead induced by data
transfers between host and device is another important challenge to be faced when using GPU for the acceleration
of B&B. In [1] the two contributions previously cited in this paragraph are extended, proposing an operator-driven
approach that implements the branching, bounding and pruning operators as CUDA-kernels. In this approach a
pool of nodes is selected on CPU side, according to selectionstrategy based on the depth of a node, resulting in
depth-�rst exploration. The selected pool is transferred to the device, where the subproblems are branched, the
resulting children-nodes evaluated and only the non-pruned children nodes are sent back to the CPU for insertion
into the pool of pending subproblems. The pools of subproblems are implemented as stacks for depth-�rst search
(DFS) – however, as other data structures, like priority queues, may be used for other search strategies it will be
referred to as “linked-list-based”. The choice of DFS is motivated by the fact that it results in much lower memory
requirements than other search strategies, like breadth-�rst. Branching is performed as described in Subsection1.1,
generating two poolsbeginandend, retaining only the one where the sum of lower bounds is greater. A particularity
of [1] consists in the dynamic adjustment of the size of the of�oaded pools using an auto-tuning heuristic, providing
a regularization of the workload. The authors show that branching and pruning on the GPU reduces the amount of
data transferred between the host and the device. However, those data transfers remain a bottleneck, even for the
algorithm proposed in [1]. The use of linked-list-based data structures actually prevent the ef�cient implementation
of the selection operator inside the GPU. In [5] a multi-core B&B algorithm based on an alternative data structure
called IVM has been proposed. This data structure, which is described in the following Section2, has a constant
memory footprint, making it more suitable for a GPU implementation.

2. IVM-based Branch and Bound

This section describes the Integer-Vector-Matrix (IVM) based B&B algorithm. For comparison, Subsection2.1
explains the working of a conventional linked-list of nodes. This is illustrated with an example of a pool obtained
when solving a �owshop instance de�ned by 4 jobs. Flowshop, as explained in Subsection5.1, is a permutation
problem for which the objective is to �nd the optimal permutation of jobs according to one criterion or several
criteria. This example with 4 jobs is used, in Subsection2.2, to explain the management of a pool using the
IVM data structure. Subsection2.3 introduces the factorial (or factoradic) number system andSubsection2.4
describes how intervals of factoradic numbers are used to encode and communicate work units between different
IVM-structures.

2.1. Serial linked-list-based B&B
The pool of Figure3 is represented as a tree in order to visualize the problem/subproblem relationship between

nodes, and as a matrix to facilitate the comparison with our IVM-based approach described in Subsection2.2.
5

(a) Linked-list-based representation. (b) IVM-based representation.

Figure 4: An example of a pool obtained when solving a permutation problem of size 4

However, this pool is usually implemented with a linked-list as shown in Figure4a. For the sake of simplicity, jobs
are only scheduled in the beginning of the partial permutations. For instance, in Figure3, the node24/13means
that job 2 is scheduled at the �rst position, job 4 at the second position, and jobs 1 and 3 are not yet scheduled.
In this �gure, dashed nodes represent subproblems which areadded into the linked-list and selected from it. At
each B&B iteration, the algorithm points to a node of the B&B pool. In the example of Figure3, the algorithm is
currently pointing to the solution2314/. Therefore, Figure4arepresents the state of the pool just before removing
2314/. Before selecting2314/, the linked-list contains �ve nodes, namely4/123, 3/124, 24/13, 234/1and2314/.

Before having a linked-list in this state, some operations are applied. At the beginning of the B&B, none of
the four jobs is scheduled (i.e./1234). The node/1234is branched/decomposed into four nodes which are1/234,
2/134, 3/124and4/123. In each of these nodes, one job is scheduled and the three other jobs are not yet scheduled.
This example assumes that the �rst node1/234is processed or pruned, and the algorithm selects and branches
the second node2/134. The decomposition of this node gives three nodes, namely21/34, 23/14and24/13. The
example also assumes that the �rst node21/34is processed or pruned. Therefore, the algorithm decomposes the
second node23/14, and obtains two new nodes which are231/4and234/1. The node231/4represents a simple
subproblem and accepts only one solution2314/.

2.2. Serial IVM-based B&B

Figure4bshows the representation of the state of the pool of Figure3 using an integer (I), a square matrix (M)
of integers and a vector (V) instead of the conventional linked-list used in Subsection2.1. The size of the square
matrix M and the vectorV are equal toN, the number of jobs. In this example,N = 4. In matrixM a cell with
a column number strictly greater than its row number is neverused (upper triangular matrix). Each node of the
B&B pool is represented by one cell of the matrix. In other words, it is represented by a single integer instead of a
permutation of integers. For instance, the �rst row ofM contains all job numbers 1;2; :::;N, each cell representing
one of theN subproblems of depth 1 obtained by �xing respectively job 1;2; :::;N at the �rst position. After the
decomposition of the root node, only the �rst row ofM is �lled, all following rows are empty.

� To selectone of these subproblems on the current levelI , the value ofV(I) is set such that it points to the
corresponding cell. For instance, settingV(0) = 1 selects2/134. The so-calledposition-vector Valways
points to the currently active node.

� In order tobranch a selected node, all elements of the active row, except the one pointed by the position-
vector, are copied to the next row. For instance, to decompose2/134, the elements of rowI = 0, except the
scheduled jobM(0;V(0)) = 2 are copied to the next row. Also, the integerI 2 [0;N[is incremented by one
when a subproblem is decomposed.

� To prune a subproblem whose lower bound is greater than the best solution found so far, the corresponding
cell should be ignored by the selection operator. For instance, to select the next node in rowI = 1, the node
21/34is skipped by incrementingV(1). To �ag a cell as “pruned” its value is multiplied by� 1. With this
convention the branch procedure actually consists in copying the absolute values to the next row, i.e. copying
job � j as j and j as j.

6

Each of the pool management operators can be expressed as an action on the IVM-structure. Before the bounding
operator can compute the lower bounds of the generated subproblems, adecodeoperation is required. For exam-
ple, the solution currently encoded in Figure4b is 2314/, which can be directly read by looking (from row 0 to row
I = 3) at the values that are pointed by the position-vector. With the same vector and matrix, if the integer isI = 1,
the subproblem encoded by the IVM-structure is23/14.

Algorithm 1 Serial select-and-branch
1: procedure SELECT-AND-BRANCH
2: while (positionVector� end)do
3: if (row-end)then . (V(I) > I)?
4: cell-upward . I � � ;V(I) ++
5: else if(cell-eliminate)then . M(I ;V(I)) < 0?
6: cell-rightward . V(I) ++
7: else
8: generate-next-line (branch)
9: break
10: end if
11: end while
12: end procedure

Using the IVM data structure, thedepth-�rst search (DFS) strat-
egy consists in selecting deepest leftmost non-negative cell in M. The
depth-�rst select-and-branch procedure is described in Algorithm1.
First, a promising (i.e. non-pruned) node is searched in thecurrent
row I , right of the current cellM(I ;V(I)) , which is done by incre-
menting the position-vector (line 6). If no promising node is found in
the current row, the search continues in the row above (I � 1), starting
from the cell right of the previously selectedM(I � 1;V(I � 1)) (line
4). When a promising node is found it is branched by generating the
next line (line 8). The search stops without branching if theposition-
vectorV has reached its maximum allowed value (end-vector) without
�nding a promising node. When using a linked-list for the implementation of the pool of subproblems the choice
of DFS is motivated by the reduced memory requirements of DFScompared to breadth-�rst search (BFS) or other
selection strategies. The IVM structure is conceived as an alternative data structure for DFS and it is not possible
to perform a BFS using IVM.

In order to allow the scheduling of jobs at both ends of the partial permutations, an additional vector called
direction-vectoris used. This vector indicates for each row if the job pointedby the position-vector is to be placed
in the beginning, or the end of the schedule. For instance, ifthe IVM-structure in Figure4b is completed with the
direction-vector(0110), then the jobs 3 and 1, pointed in the second and third row are scheduled at the end. The
currently encoded node is then24//13, which is a solution.

2.3. Position-vector: factoradic numbers

Throughout the exploration process, the position-vector behaves like a factoradic counter. In the example of
Figure4b, the value of this vector is equal to0000when the algorithm points to the �rst solution of the B&B
tree, and its value is equal to3210when the algorithm points to the last solution of the tree. Between these two
values, the vector successively takes the following values: 0010, 0100, 0110, 0200, 0210, ..., 3200. For each of
these values, the algorithm points to a different solution of the tree. There are 24 possible values since there are
24 solutions (i.e. 4!). In reality, these 24 position-vector values correspond to the numbering of the 24 solutions
using a special numbering system, called factorial number system. In the decimal number system, the weight of
theith position is equal to 10i , while in the factorial number system, the weight of theith position is equal toi!. In
the decimal number system, the digits allowed at each position are 0� 9, while in the factorial number system, the
digits allowed for theith position are 0� i. Therefore, the digit of the �rst position is always 0. The factorial number
system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It satis�es the
conditions of what G. Cantor called asimplenumber system in [15]. Applied to the numbering of permutations,
the French termnuḿeration factoriellewas �rst used in 1888 [16]. Knuth [17] uses the termfactorial number
systemand the termfactoradic, which seems to be of more recent date is used, for instance, in [18].

2.4. Parallel IVM-based B&B

The properties of the position-vector allow us to say that “aB&B-process explores an interval[A;B[using its
IVM-structure”. In the example of Figure4b, the interval explored by the algorithm is[0000;3210[. It is therefore
possible to have two processesR1, R2such asR1explores[0000;X[andR2explores[X;3210[, each process using
its private IVM-structure. Instead of sets of nodes, the work units of the IVM-based parallel B&B are intervals
of factoradics. Because of the irregular and unpredictableshape of the explored tree, dynamic load balancing is
necessary to maintain the degree of parallelism induced by the parallel tree exploration model. IfR2ends exploring
its interval beforeR1, thenR2requests a portion of its interval fromR1. Therefore,R1andR2can exchange their
interval portions until the exploration of all[0000;3210[. With the exception of rare works such as [13], work units

7

exchanged between processes are sets of nodes.
To implement this strategy based on intervals of factoradics, it is necessary to allow a thread to explore any

interval [A;B[. To begin the exploration at a given vectorV = (P1P2P3:::PN) (= A, expressed as a factoradic) the
IVM-structure needs to be initialized accordingly. The correct initialized state is such that it would be the same if
the new position-vectorV had been reached through the exploration process. Therefore, the initialization process
differs from the normal B&B process only in the selection operator. Instead of running the depth-�rst selection
procedure (Algorithm1), the initialization process selects at each levelk the node pointed byV(k) as long as
the selected subproblem is promising. If a pruned node is selected, the initialization process is �nished and the
IVM resumes exploration, searching for the next node to decompose. If the �rstl positions of the newly received
position-vector coincide with the position-vector of the victim IVM, then the victim's matrix and direction-vector
for lines 1;2; :::; l can be copied to the thief. The thief IVM then starts initializing at linel + 1. The initialization
process may thus last for 1 toN iterations.

3. GPU IVM-based Branch and Bound

This section describes our GPU-B&B algorithm based on the IVM data structure. The memory requirements of
the IVM structure are very advantageous for a GPU-implementation of the B&B algorithm. The required amount
of memory and possible data placements in the hierarchical device memory are discussed in Subsection3.1. The
amount of used memory depends on the number of IVM-structures used by the algorithm. This number also has
a direct impact on the degree of parallelism which is analysed in Subsection3.2. Both these subsections consider
the framework for the GPU-based B&B algorithm. The algorithm itself is explained in Subsection3.3. This
subsection starts from a general illustration of the algorithm which is followed by a more detailed description of
its components, which are 6 CUDA-kernels.

3.1. Memory requirements

Compared to a conventional linked-list-based approach, the IVM data structure allows to reduce the CPU time
and memory required for the storage and management of the pool of subproblems [6]. Contrary to a linked-list,
the IVM data structure is well adapted to the GPU memory model. Instead of using a variable length queue that
requires dynamic memory allocations and tends to be scattered in memory, the IVM structures are constant in size
and need only one allocation of contiguous memory. For a problem instance withN jobs, the storage of the matrix
M requiresN2 bytes of memory (forN < 127, using 1-byte integers). Moreover 3N bytes are needed to store the
position-, end- and direction-vectors, 1 byte to store the integer, andN bytes to store permutations before calling
the bounding operator. In total, the IVM data structure requires a constant amount of 1+ 4N+ N2 bytes of memory,
i.e. 481 bytes per IVM for a 20-job instance. It is possible store only the upper triangular part ofM, requiring
1+ 4N+ N(N+ 1)

2 bytes per IVM, i.e. 291 bytes whenN = 20. ForN = 20 it is therefore possible to �t� 100 IVM
structures into 48 kB of shared memory. In this paper, only the upper triangular part ofM is stored.

From a programming perspective the IVM-structures are easyto handle. The components of all IVMs are
merged into single one-dimensional arrays. For instance, solving a N-job instance usingT IVM structures, the
matrices are stored in a one-dimensional arraymatrices of sizeT � N(N+ 1)

2 allocated in global device memory.
The elementM(i; j) of the kth IVM is accessed bymatrices[indexM(i,j,k)] , whereindexM is a wrapper-
function de�ned as in Equation (1) if M is stored as a square and as in Equation (2) if the upper triangular part of
M is stored.

indexM(i; j;k) = k� N � N+ i � N+ j (1)

indexM(i; j;k) = k�
N(N + 1)

2
+ i � N�

i(i � 1)
2

+ j (2)

The data needed for the computation of the lower bounds is mostly read-only and requires 34:5 kB of memory.
This data is stored in the constant memory space, residing inglobal device memory but accessed through a cache
on each streaming multiprocessor (SM). Some of the data structures used for the bounding may be loaded to
shared memory during the computation of the lower bounds. Concerning the use of shared memory for those data
structures, this paper follows the recommendations made in[19], where this dif�cult choice is examined.

8

Figure 5: Flowchart of the GPU-based IVM-B&B algorithm

3.2. Degree of concurrency

Often, the bounding operator is by far the most time consuming part of a B&B algorithm. As mentioned
before, in the case of �owshop it amounts for about 97� 99% [4] of the total execution time for a sequential B&B.
It is therefore crucial for the performance of our GPU-basedB&B that the parallel bounding operation makes
the best use of the GPU resources. The choice of the number of B&B processes (= IVMs) to use is therefore
guided by its impact on the performance of the bounding kernel. On the one hand, if too few IVMs participate
in the exploration process, the bounding kernel underutilizes the GPU. On the other hand, if too many IVMs are
used, then the number of generated subproblems per iteration exceeds the maximum occupancy of the device and
the computation of bounds is partially serialized. The number of subproblems generated per IVM per iteration
is variable and unpredictable. However, the workload for the bounding kernel can be roughly estimated. For
�owshop instances of 20 jobs, the bulk of subproblems is situated at depth 10, leading to approximately 20 bound
evaluations per IVM and iteration. Supposing that the number of empty IVMs is low thanks to dynamic load
balancing, and given the approximative number of 20;000 concurrent threads at full occupancy, the numberT of
used IVMs should be aroundT = 1000.

3.3. IVM-based GPU-B&B

In consistency with the CUDA programming model, the GPU-based parallel tree exploration is performed
synchronously. The algorithm consists of different phasesbetween which the B&B processes are synchronized.
Although some implementations of global synchronization primitives are proposed in the literature [20], the global
synchronization of an arbitrary number of thread blocks canonly be achieved implicitly through kernel termination.
Therefore the GPU-based B&B is implemented as a series of CUDA-kernels which are launched in a loop until
the termination of the tree exploration. Figure5 provides an overview of the algorithm. All B&B operators
are entirely performed on the GPU and correspond to �ve kernels: share , goToNext , decode , bound and
prune . Moreover an auxiliary kernelprepareBound is used to build the mapping for the bounding operation
(explained in Section4). In this phase the best found solution so far is determined by a min-reduce of the best
solutions found by all IVMs. In the same reduce procedure thetermination of the algorithm is detected by searching
the maximum of a per-IVM state variable where the stateemptyis encoded as 0. In order to stop iterating through

9

the B&B loop this information needs to be copied to the host ateach iteration. Throughout the exploration process
this is the only data (1 byte) that is transferred between host and device memory.

3.3.1. Load-balancing: kernelshare
Algorithm 2 Kernelshare
1: procedure SHARE
2: thId blockIdx.x*blockDim.x + threadIdx.x
3: ivm map(thId)
4: victim (ivm-1)%T
5: if (state[ivm]=empty .and. state[victim]=exploring)then
6: new-pos computeNewPos(pos[victim], end[victim])
7: pos[ivm] new-pos
8: end[ivm] end[victim]
9: end[victim] new-pos
10: state[ivm] init
11: end if
12: end procedure

Work stealing (WS) is well-adapted for irregular appli-
cations. Like threads of a multi-core application, the IVM
structures must share their work units. In a multi-core en-
vironment, a thread that runs out of work becomes athief
that attempts to steal a portion of work from avictim thread
which is selected according to a victim selection strategy.
The same principle can be applied to the GPU-based B&B.
The proposed load balancing strategy is conceptually differ-
ent in the sense that an IVM-based B&B process does not
necessarily correspond to any particular thread but only to
a segment of data. Secondly, compared to multi-core WS
strategies, the WS operations between IVMs are lock-free and performed synchronously. The kernelshare
implements the 1D-ring WS strategy presented in [5]. Algorithm 2 shows the pseudo-code of this procedure. Al-
though designed for multi-core IVM-based B&B, the 1D-ring strategy suits the synchronous execution mode of
the GPU. TheT IVM structures are numbered R= 0;1; :::;T � 1 and are arranged as an oriented ring, i.e. such
that IVM 0 is IVM (T � 1)'s successor. Each empty IVM R tries to steal work from its predecessor(R� 1)%T.
This operation can be performed in parallel, as the mapping of empty IVMs onto their respective victims is one-
to-one. If the selected victim has a non-empty interval, then all but 1/Tth of its interval is stolen. The function
computeNewPos (line 6) receives the victim's interval[A;B[as input and returns a pointC = (1� 1

T)A+ 1
T B.

The division of intervals can be performed directly on the factoradic numbers without explicitly converting them to
decimals. The IVM which got stolen continues the exploration of the remaining interval[A;C[, while the stealing
IVM needs to initialize its matrix at the new position-vector C before starting the exploration of[C;B[. Its state-
variable is therefore set toinit (line 10). Each IVM cycles through three distinct states, fromexploringto emptyto
initializing and back toexploring. An IVM can be in one of these three states at any given stage ofthe algorithm.
Depending on the state of an IVM, different actions are performed during an iteration. In this kernel one thread
per IVM is required. More parallelism can hardly be exposed.However, more threads can eventually be used to
assign vectors in one parallel operation (lines 7� 9). In Subsection4.4 it is explained how, based on the kernel
share , this WS strategy can be extended.

3.3.2. Selection and branching: kernelgoToNext
Algorithm 3 KernelgoToNext
1: procedure GOTONEXT
2: thdIdx blockIdx.x*blockDim.x + threadIdx.x
3: ivm map(thdIdx)
4: if (state[ivm]==init)then
5: if (init-�nished(ivm)) then
6: state[ivm] exploring
7: else
8: generate-next-line . branch
9: end if
10: end if
11: if (state[ivm]==exploring)then
12: select-and-branch
13: if (exploration-�nished(ivm))then
14: state[ivm] empty
15: end if
16: end if
17: end procedure

The goToNextkernel corresponds to the selection and branching
operators. Algorithm3 shows the pseudo-code of this kernel. It per-
forms the selection operator for both, exploring and initializing IVMs.
It also updates the IVM-states if necessary. For each exploring IVM
it performs theselect-and-branch procedure described in Al-
gorithm 1 (line 12). If an exploring IVM �nds no promising node
(line 13), then its state variable is set toempty. If the end of an IVM's
initialization process is detected (line 5) it switches toexploring. It
is possible that, within one iteration, an empty IVM receives an inter-
val, �nishes initializing and returns to the empty state. Asexplained
in Subsection2.4, the initialization process differs from the normal
exploration process only in the selection operator. The initialization-
selection consists in choosing the node pointed by the position-vector.
Thus, only thegenerate-next-linebranching procedure is performed.
Each IVM is handled by a single thread as the operations that modify each IVM structure are essentially of se-
quential nature. This kernel contains a very high number of conditional instructions depending on the state of an
IVM as well as on its current depth in the B&B tree. In order to avoid thread divergence the mapping of threads
onto the IVM structures (line 3) must be chosen carefully. This mapping is discussed in Section4.

10

begin end

2 3 41

limit 1 limit 2

unscheduled jobs

sum begin sum endbounddecode

6

1 2

IVM R-1

1 2

2 3 41 5 6

atomic
add

IVM subproblem
(father)

2

1 2 3 4 5 6

IVM R+1

2 3 41

IVM R

subproblems
(children)

lower bounds

map

1 Thread / IVM 2x(#jobs-line) threads / IVM

4 32 1

1 3 42

1 34 2

3 12 4

1 2 4 3

4 2 3 1

1 2 3 4

4

1 2 3 4

line

Figure 6: Illustration of the decode and bounding phases

3.3.3. Preparation of subproblems: kerneldecode
For each non-empty IVM a father subproblem is selected in thegoToNext kernel. Thedecode kernel brings

these subproblems to the form2/13/4which can be evaluated by the bounding operator. Each non-empty IVM data
structure is read and the kernel outputs aN-integer sequenceschedulewith two integerslimit1 andlimit2. The
integerslimit1, limit2 represent the “/”s in the adopted notation. This decoding operation is essentially sequential,
so each IVM is handled by a single thread. Between IVM structures the number of jobs affected in the beginning
or the end differs, which induces thread divergence if several threads within the same warp are assigned to different
IVMs.

3.3.4. Parallel evaluation of lower bounds: kernelbound
The ef�ciency of the tree pruning mechanism directly depends on the relevance of the bounding operator. The

lower bound proposed by Lageweget al. [21] is used in our bounding operator. This bound is known for itsgood
results and has complexity ofO(M2Nlog(N)) , whereN is the number of jobs andM the number of machines.
This lower bound is mainly based on Johnson's theorem [22] which provides a procedure for �nding an optimal
solution for �owshop scheduling problem with 2 machines. The computation of the lower bound includes several
control �ow instructions that depend on the depth of a subproblem and on the number of jobs placed at each end of
the partial permutation that is evaluated. In [14] several techniques are proposed to reduce the thread divergence
related to these control �ow instructions. These optimizations are taken into account in the procedurecomputeLB
which returns a lower bound (LB) value for a subproblem provided in the form2/13/4(schedule=2134, limit1=0,
limit2=3).
The granularity in this kernel is the computation of one bound. Each active thread in this kernel generates a
distinct subproblem from the father node and computes its lower bound. These lower bound values are stored
and atomically added to the valuessumBegin andsumEnd, which are used to decide which decomposition is
retained. For each father subproblem of depthI , the lower bounds for 2� (N � I) = 2 � (limit2 � limit1 � 1)
children are computed. The father-children relation and the bounding procedure are illustrated in Figure6. The
number of active threads in the bounding kernel is thereforegiven by

2� todo= 2�
#IVM

å
ivm, /0

(#jobs� line[ivm]) � 2� #IVM � N:

At a given iteration, this quantity depends unpredictably on the number of non-empty IVMs and on their depth in
the B&B tree. The maximum 2� #IVM � N occurs in the case where all IVMs have non-empty intervals atlevel
0. Each thread that computes a lower bound must be provided the following information: (1) on which IVM it is

11

working, (2) which unscheduled job it is scheduling and (3) on what end of the partial permutation to schedule.
A static mapping of threads onto potentially generated children nodes (thus launching 2� #IVM � #jobsthreads at
each invocation) is possible. As this mapping is critical for the performance of the bounding kernel, and thus for the
entire algorithm, a remapping phase should precede the calling of the bounding kernel. Building such a mapping
generates extra overhead which must be kept low. The mappingand implementation details of the bounding kernel
are further discussed in Section4.

3.3.5. kernelprune
In a �rst step the pruning kernel compares the valuessumBeginandsumEndfor each IVM. Depending on this

comparison it uses the set of lower boundscostBeginor costEndto perform the pruning of nodes. The pruning
itself consists in multiplying the corresponding cell in the matrix by� 1 if the associated lower bound is greater
than the best found solution so far. This kernel is the computationally less intensive one.

4. Mapping and thread divergence reduction

The shape of the tree explored by a B&B algorithm is highly irregular and unpredictable, resulting in an
irregular workload, irregular control �ow and irregular memory access pattern. If not addressed properly, these
irregularities may cause a low occupancy of the device, serialized execution of instructions and poor bandwidth
usage due to uncoalesced memory accesses. Both, the application's memory access pattern and the divergent
behaviour of threads depend strongly on the chosen mapping of threads onto the data. When a GPU application
runs, each streaming multiprocessor (SM) is assigned one ormore thread block(s) to execute. Those threads
are partitioned into groups of 32 threads1, called warps, which are scheduled for execution. CUDA's single-
instruction multiple-thread (SIMT) execution model assumes that a warp executes one common instruction at a
time. Consequently, full ef�ciency is realized when all 32 threads of a warp agree on their execution path. However,
if threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path
taken. Threads that are not on that path are disabled, and when all paths complete, the threads converge back
to the same execution path. This phenomenon is called threaddivergence and often causes serious performance
degradations. In a very similar way, if the threads in a warp agree on the location of a requested piece of data, it
may be fetched in single cycle, otherwise serialization of the data accesses occurs. In this paper the focus is put
on reducing thread divergence and increasing warp execution ef�ciency by making judicious mapping choices. In
Subsection4.1 two different mapping strategies for the bounding kernel are presented. Subsection4.2 discusses
how to reduce the overhead induced by the building of the mapping. Finally,4.3presents alternative mappings for
the IVM management kernels where the number of conditional instructions is very high.

4.1. Mapping the bounding operation
The most straightforward approach probably consists in mapping each thread onto a child subproblem directly

from its threadId . This naive approach is shown in Algorithm4. For instance, launching 2� N � #IVM threads
(line 2), the �rst N � #IVM threads place unscheduled jobs in the beginning, the secondN � #IVM threads in the
end. Regardless of the IVM's state or current depth in the tree, 2� N threads are reserved for each IVM. Each
thread is assigned an IVM to work on and a job to schedule, likeshown in lines 4-6 of Algorithm4. The approach
of Algorithm 4 has several disadvantages. Theif-conditionals in line 8 and 9 mask many of the launched threads,
precisely 2� k threads per father subproblem of depthk, plus 2N threads per empty IVM. Moreover, different
lanes in the same warp work on different IVMs, thus thread divergence occurs due to different values oflimit1 and
limit2. If T � N is a multiple ofwarp-size, then theif-elseconditional (lines 10 and 14) does not cause any thread
divergence.

The goal of the remapping procedure which prepares the bounding is to build two mapsivm-mapandjob-map
which contain, fortodothreads, the information which IVM to work on and which job toswap. Using an even/odd
pattern these maps provide suf�cient information for both groups of threads. After building these maps, the bound-
ing kernel (as shown in Algorithm5) is called with 2� todothreads, where:

1We assume using the GK110 model

12

Algorithm 4 KernelSTATIC-MAP-BOUND
in: fathers (father,limit1,limit2)
out:lower bounds begin, lower bounds end, sums of lower bounds

1: procedure NAIVE -BOUND
2: <<< 2� #jobs� #IV M threads>>>
3: thId blockIdx.x*blockDim.x + threadIdx.x
4: if (state[ivm] == not-empty)then
5: if (limit1[ivm] < job < limit2[ivm]) then
6: if (dir == 0) then . evaluate begin
7: swap(schedule, limit1[ivm]+1, job)
8: LB-begin[ivm][job] computeLB(schedule)
9: sum-begin[ivm] += LB-begin[ivm][job] . atomic
10: else if(dir == 1) then . evaluate end
11: swap(schedule, limit2[ivm]-1, job)
12: LB-end[ivm][job] computeLB(schedule)
13: sum-end[ivm] += LB-end[ivm][job] . atomic
14: end if
15: end if
16: end if
17: end procedure

Algorithm 5 KernelREMAPPED-BOUNDING
in: fathers (father,limit1,limit2), ivm-map, job-map
out:lower bounds begin, lower bounds end, sums of lower bounds

1: procedure REMAPPED-BOUND
2: <<< 2� todothreads>>>
3: thId blockIdx.x*blockDim.x + threadIdx.x
4: dir thId mod 2
5: ivm ivm-map[thId/2]
6: job job-map[thId/2]
7: schedule fathers[ivm]
8: toSwap (1-dir)*(limit1[ivm]+1) + dir*(limit2[ivm]-1)
9: swap(schedule, toSwap, job)
10: LB[dir][ivm][job] computeLB(schedule)
11: sum[dir][ivm] += LB[dir][ivm][job] . atomic
12: end procedure

� threads 0 and 1 work on IVMivm-map[0], swapping jobjob-map[0]respectively to begin/end,

� threads 2 and 3 work on IVMivm-map[1], swapping jobjob-map[1]respectively to begin/end,

� ...

� threads 2� todo� 2 and 2� todo� 1 work on IVM ivm-map[todo-1],...

The remapped bounding kernel is launched at each iteration with a kernel con�guration of(2� todo=blockDim)+ 1
blocks (simpli�ed in Algorithm5) which is adapted to the workload. The proposed approach is known asstream
compactionin the literature. It reduces the number of idle lanes per warp as well as the number of threads launched
per kernel invocation. However, any thread divergence resulting from the begin-end distinction should also be
avoided, as this involves a serialization of the costlycomputeLB procedure. To achieve this, the bodies of the
if-elseconditional (Alg. 4, lines 10� 18) can be merged into a single one (Alg.5, lines 8� 11). Two different
arguments of the same type, occurring on the right-hand sideof a statement can often be refactored into a single
one, like in Algorithm5, line 8. The different arrays on the left-hand side are merged into larger ones. This
allows to merge the statements of lines 12,13 and 16,17 of Algorithm4 into single statements (Alg.5, lines 10,11).
The separation of data within these merged arrays is assuredby indexing with the variabledir , which evaluates
differently for even/odd threads.

4.2. Ef�cient building of the remapping

Algorithm6describes how to build the mapsivm-mapandjob-mapsequentially. However, sequential execution
of this procedure on the device has prohibitive cost, exceeding 25% of the total execution time. The remapping
should therefore be built in parallel. The parallelizationof the outerfor-loop (Alg. 6, line 3) is not straightforward,
because it is unknown at which location the data for each IVM is to be written to. Computing thepre�x-sumof a
vector containing the number of jobs to be scheduled per IVM allows its parallelization.
The operationpre�x-sumis de�ned as

pre f ix� sum: [a0 a1 a2 ::: an] 7�! [0 a0 (a0 + a1) (a0 + a1 + a2) :::
n� 1

å
i= 0

ai]:

Ef�cient parallel CUDA-implementations for this operation have been proposed in the literature [23]. It is also
available in the CUDA Thrust library. However, for relatively small vectors it may be preferable to reimplement
the operation, in order to avoid casting the input data to athrust::device ptr .
A �rst building step consists in �lling an arraytodo-per-IVM with limit2 � limit1 � 1 for each IVM. The
elementRof prefix-sum(todo-per-IVM) indicates at which position ofivm-map andjob-map the data
of an IVM Rstarts to be written. The complete parallelized building ofthe mapping is shown in Algorithm7. The

13

Algorithm 6 Build mapping (serial)
1: procedure SERIAL PREPARE BOUND
2: running-index 0
3: for (ivm = 0 ! T)) do
4: if (state[ivm] = not-empty)then
5: for (job = limit1[ivm] + 1 ! limit2[ivm]) do
6: ivm-map[running-index] ivm
7: job-map[running-index] job
8: running-index++
9: end for
10: end if
11: end for
12: todo running-index
13: end procedure

Algorithm 7 Build mapping (parallel)
1: for all (non-empty ivm)do
2: todo-per[ivm] (limit2[ivm]-limit1[ivm]-1) . else 0
3: end for
4: Aux parallel-pre�x-sum(todo-per)
5: prepare-bound<<< #IVM � #JOBS>>>
6: procedure [K ERNEL] PREPARE-BOUND
7: thId blockIdx.x*blockDim.x + threadIdx.x
8: ivm thId / N
9: thPos thId % N
10: if (thPos< todo-per[ivm])then
11: ivm-map[Aux[ivm]+thPos] ivm
12: job-map[Aux[ivm]+thPos] limit1[ivm]+1+thPos
13: end if
14: todo Aux[#IVM]+todo-per[#IVM]
15: end procedure

Algorithm 8 Mapping 1
1: kernel<<< #IVM threads>>>
2: ivm blockIdx.x*blockDim.x + threadIdx.x
3: do-something-with[ivm]

Algorithm 9 Mapping 2
1: kernel<<< warpsize� #IVM threads>>>
2: thId blockIdx.x*blockDim.x + threadIdx.x
3: ivm thId/32
4: thPos thId%32
5: if (thPos == 0)then
6: do-something-with[ivm]
7: end if

building of the mapping ranges over several kernels. The �lling of todo-per-IVM can be done, for instance, in
the decode-kernel.

4.3. Mapping choices for IVM management kernels

The IVM-management kernelsshare , goToNext , decode andprune require a single thread per IVM.
The naive approach consists in launchingT threads and mapping threadk on IVM k, for k = 0;1; :::;T � 1 (see
Algorithm8). Given the high number of conditional instructions in the IVM-management kernels it is very unlikely
that all 32 threads in a warp follow the same execution path ifthis mapping is used. Indeed, in these kernels control
�ow divergence results from different IVM-states, different numbers of scheduled jobs at both ends of the active
subproblem and from the search for the next node which requires an unknown number of iterations.

An alternative mapping, shown in Algorithm9, can solve this issue. An entire warp is assigned to each IVM,so
all threads belonging to the same warp follow the same execution path. This strategy goes in the opposite direction
of the stream compaction approach proposed for the boundingkernel. As only one thread per IVM is needed, all
lanes in a warp except this �rst are masked. Thus, the kernelsare launched with 32� as many threads as necessary
(i.e. 32� T). Using this mapping, the overhead induced by thread divergence completely disappears (although
technically, the disabled threads are diverging at line 5 ofAlgorithm 9). The drawback is obviously the launching
of 31T idle threads. However, in Subsection3.2 we argued thatT should be chosen aroundT = 1000, which is
small compared to #SM� (max. threads per SM). This, and the fact that the control �owirregularity is very high,
justi�es the approach of using 1 warp per IVM. Moreover, using only 4-8 IVM-structures per block allows to store
them into shared memory without limiting the theoretical occupancy of the device. The loading of data from global
to shared memory can be done very ef�ciently, using the additional threads which are not used for computation.

4.4. Work stealing strategies

The topology used in the WS strategy described in Subsection3.3.1is a unidirectional 1-dimensional ring (1D-
ring). The maximal distance between two IVMs in the 1D-ring isT. Work units propagate through the ring as they
are passed downstream from exploring to empty IVMs. As most of the explored B&B nodes are actually contained
in a relatively small interval, the workload tends to be concentrated in some part of the ring. Thus, workers situated
far away from the source are only kept busy if the overall workload is large enough. With an increasing numberT
of IVM structures it becomes more likely that no work is dripping down to some of the workers. A topology that

14

Figure 7: Illustration of 2D-ring topology forT IVMs usingRrings of ring-sizeC.

reduces the maximum distance between two workers should therefore improve the scaling withT.
The 1D-ring can be easily generalized to a 2D-ring, or torus,topology. Instead of using a single ring, IVMs are

arranged inR rings of ring-sizeC = T=R. In a �rst step each empty IVM attempts to steal from its left neighbour
within the same ring. A second step connects the rings between each other: each empty IVM selects the IVM
with the corresponding ID in the preceding ring (with ringR� 1 being connected to ring 0). The roles played by
both directions are symmetric. Ideally, the numberR is therefore such thatR=

p
T, which is only possible ifT

is square. In that case the 2D-ring reduces the maximum distance between two IVMs to 2
p

T. If C , R, then the
diameter of the 2D-ring is(C+ R).

The 2D-ring topology is implemented by two subsequent callsof kernelshare (Algorithm 2), where only
line 4 of the algorithm needs to be modi�ed. In particular, line 4 of Algorithm2 is replaced by the following.

In Step 1 IVMi selectsvictim(i) =

(
i � 1; if i mod C, 0
i + (C� 1); otherwise

In Step 2 IVMi selectsvictim(i) =

(
i � C; if i > (C� 1)
(R� 1)C+ i; otherwise

Figure7 illustrates the 2D-ring topology in the form of a 2D-grid. A torus, used in the 2D-ring WS strategy is
obtained by connecting the upper with the lower and the leftmost with the rightmost cells. Similarly, the topology
can be extended to a hypercube, which is used for instance in [24] for unbalanced tree search.

5. Experiments

In this section the performance of the IVM-based GPU-B&B is analysed for different mapping choices, a
varying number of IVM structures and different work stealing strategies. Subsection5.1 explains the �owshop
scheduling problem, the problem instances used for benchmarking and the hardware test-bed. In Subsection5.3
the mapping strategies for the bounding kernel are evaluated and Subsection5.4 compares the different mapping
strategies for the pool management kernels. The algorithm's scalability and load balancing issues are examined
in Subsection5.5. Finally, our IVM-based GPU-B&B algorithm is compared to the GPU-accelerated linked-list
based algorithm presented in [1].

5.1. Flowshop scheduling problem

Flowshop belongs to the category of scheduling problems. A scheduling problem is de�ned by a set of jobs and
resources. Flowshop is a multi-operation problem, where each operation is the execution of a job on a machine. In
this problem, the resources are machines in a production workshop. The machines are arranged in a certain order.
As illustrated in the example of Figure8, the machines process jobs according to the chain production principle.
Thus, a machine can start processing only those jobs which have completed processing on all the machines which
are located upstream. A duration is associated with each operation. This duration is the time required for a machine

15

M3

M2

M1 J2

 J2

 J4 J5 J1 J3 J6

 J5 J1

 J1

 J4 J6 J3

 J2 J4 J5 J6 J3

Figure 8: Example of a solution of a �owshop problem instancede�ned by 6 jobs and 3 machines.

to �nish the processing of a job. An operation can not be interrupted, and machines are critical resources, because
a machine processes one job at a time. Themakespanof a solution corresponds to the time when the last job ends
on the last machine. The objective is to �nd a solution that minimizes themakespan. In [25], it is shown that the
minimization ofmakespanis NP-hard from 3 machines upwards.

In our experiments, the �owshop instances de�ned by Taillard [26] are used to validate our approach. These
instances are divided into 12 groups: 20x5 (i.e. group of instances de�ned by 20 jobs and 5 machines), 20x10,
20x20, 50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10, 200x20, and 500x20. In each group, 10 different
instances are generated. For each instance, the duration ofeach job on each machine is randomly generated by
[26]. These standard instances are often used in the literatureto evaluate the performance of methods that minimize
the makespan. The instances of the 6 groups where the number of machines is equal to 5 or 10 (i.e. 20x5, 20x10,
50x5, 50x10, 100x5, 100x10, and 200x10) are easy to solve. For these instances, the used boundingoperator gives
such good lower bounds that it is possible to solve them in fewseconds using a sequential B&B. Instances where
the number of jobs is equal to 50, 100, 200, or 500, and the number of machines is equal to 20 (i.e. 50x20, 100x20,
200x20, and 500x20) are very hard to solve. For example, the resolution ofTa056 in [13], which is one of the
10 instances de�ned with 50 jobs and 20 machines (i.e. the 50x20 group), lasted 25 days with an average of 328
processors and a cumulative computation time of about 22 years. Therefore, in our experiments, the validation is
performed using the 10 instances where the number of machines and the number of jobs are equal to 20 which
belong to the group 20x20.

When an instance is solved twice using a B&B performing a parallel tree exploration, the number of explored
subproblems is often different between the two resolutions, because the order of exploration varies. To compare
the performance of two B&B algorithms, the number of explored subproblems should be exactly the same between
the different tests. Therefore, we choose to always initialize our B&B by the optimal solution of the instance to be
solved. This initialization ensures that the tree-shape does not depend on the decrease of the best solution found
so far and that the number of explored subproblems is the samebetween the two resolutions. Table1 shows the
number of decomposed nodes during the resolution of instancesTa021-Ta030initialized with the optimal solution.
This number represents the total amount of work to be done andranges from 1:6 for the smallest to 140:8 million
nodes for the largest instance.

Table 1: Number of decomposed subproblems during the resolution of Taillard's instancesTa021-Ta030initialized with the optimal cost (in
millions of nodes).

Instance 21 22 23 24 25 26 27 28 29 30 Average
#Nodes (in millions) 41.4 22.1 140.8 40.1 41.4 71.4 57.1 8.1 6.8 1.6 43.1

5.2. Hardware/Experimental protocol

All the experiments are run on a computer equipped with a NVIDIA Tesla K20m GPU based on the GK110
architecture. The device is composed of 2496 CUDA cores (clock speed 705MHz). Its maximum power consump-
tion is 225W. Version 6.5.14 of the CUDA Toolkit is used. The CPU is a 8-core Sandy Bridge E5-2650 processor.
The operation system installed is a CentOS 6.5 Linux distribution. For the evaluation of the elapsed execution time
the UNIX time command is used. The duration of each CUDA-kernel and pro�ling of the kernels is done with
thenvprof command line pro�ler. In order to reduce the pro�ling time, sample data was collected every 100 it-
erations of the algorithm. The chosen size for the threadblocks is 128. The con�gurable size of the device's shared
memory/L1 cache is set to 48=16kB for kernels exceptbound , where the opposite con�guration 16=48kB is used.

16

For the comparison of the mapping strategies the number of used IVM-structures is set toT = 768, according to
preliminary experiments. The best mapping found in Subsections5.3and5.4is used to determine an optimal value
for T and the better work stealing strategy in Subsection5.5.

5.3. Evaluation of mappings for bounding kernel

 0

 500

 1000

 1500

 2000

S-21
M

-21
--- S-22

M
-22

--- S-23
M

-23
--- S-24

M
-24

--- S-25
M

-25
--- S-26

M
-26

S-27

M
-27

--- S-28
M

-28
--- S-29

M
-29

--- S-30
M

-30

tim
e

(s
ec

)

instance

manage-IVM
remap
bound

Figure 9: Execution time for instancesTa021-Ta030for thread-data mappingsstatic(S) andremap(M) for the kernelbound .

In this subsection the two mapping schemes for the bounding kernel, presented in Subsection4.1, are com-
pared to each other in terms of elapsed execution time of the algorithm. The �rst, using the remapping shown in
Algorithm 5 is referred to asremap, the second, using the static mapping of Algorithm4, asstatic. Figure9 shows
the total elapsed time for solving instancesTa021-Ta030. For both mappings and for each instance it shows the
portion of time spent in the kernelbound , in the IVM-management kernels (share , goToNext , decode and
prune) as well as in the remapping phase (forremap). However, as the building of the mapping consumes only
0:9% of computation time, the latter portion is barely visiblein Figure9. Table2 shows total elapsed time as well
as the time spent in the different phases of the algorithm as an average over the 10 instancesTa021-Ta030.
The compacted mappingremapis clearly advantageous as it reduces the average time spentin thebound kernel

by a factor 1:9. As the bounding operation amounts for more than 80% of the total execution time, the latter de-
creases by a factor 1:7. The overhead induced by compacting the mapping at each iteration is largely compensated
by these performance gains. Indeed, thanks to the parallelization of this phase using the parallel pre�x sum, the
remapping operation amounts for less than 1% of the elapsed time. For comparison, using the CPU for the remap-
ping, it amounts for about 7% of the algorithm's total execution time, mainly because of the transfer of the maps
back to the device.

Using the more compact mappingremapinstead ofstatic improves the control �ow ef�ciency2 (CFE) of the
kernel. Forstatic the average CFE is 0:43, meaning that for an executed instruction on average morethen half

Table 2: Average elapsed time (in seconds) and average repartition of execution time among bounding, IVM management andremapping
phases. Average taken over instancesTa021-Ta030.

elapsed walltime bound manage remap
Mapping sec sec % sec % sec %

static 696.4 632.9 89.4 63.5 10.6 0.0 0.0
remap 395.7 329.1 82.0 63.4 17.1 3.4 0.9

2de�ned asCFE = not predicated off thread inst executed
32* inst executed

17

 0

 200

 400

 600

 800

 1000

 1200

M
1-21

M
2-21

M

1-22

M
2-22

M

1-23

M
2-23

M

1-24

M
2-24

M

1-25

M
2-25

M

1-26

M
2-26

M

1-27

M
2-27

M

1-28

M
2-28

M

1-29

M
2-29

M

1-30

M
2-30

tim
e

(s
ec

)

instance

bound(s)
manage(s)

Figure 10: Execution time for instancesTa021-Ta030for different mapping choices in IVM-management kernels.

Table 3: Duration of different kernels per call (inmsec or msec), percentage of total elapsed time (%) and instruction replay overhead (IRO%),
total execution time of GPU-B&B. Average values for instancesTa021-Ta030.

Mapping goToNext decode bound elapsed
msec % IRO% msec % IRO% msec % sec

1 thread/IVM 380 10.0 40.6 168 4.4 40.3 3.07 82.0 395.7
1 warp/IVM 130 4.0 14.0 94 2.8 14.7 3.07 91.1 364.2

1 warp/IVM (shared) 85 2.6 7.9 79 2.4 12.4 3.06 92.5 356.6

of the execution slots are wasted. For the mappingremapthe average CFE is 0:83 - the launched warps are used
almost twice as ef�ciently. The number of warps launched at each kernel call is 960 for mappingstatic, which ex-
ceeds theoretical maximum of 13� 64= 832 resident warps for the K20m. The average number of warps launched
with mappingremapis 300 (average per kernel call and per instance), the average maximum (per instance) being
825 warps and the minimum 4. These results show that it is a high priority optimization to adapt the con�guration
of the algorithm's most cost intensive part to the varying workload.

5.4. Mapping for IVM management

In this subsection the two mapping schemes presented in Subsection4.3 are evaluated and compared to each
other. The kernels concerned by these mapping schemes are the IVM-management kernels (share , goToNext ,
decode andprune). Figure10shows the time spent for completing the exploration with both mapping schemes.
Both, versionone-thread-per-IVM(M1) and versionone-warp-per-IVM(M2) use the same bounding kernel (with
remapping). Although the time spent managing the IVM structures is moderate compared to the bounding opera-
tion, the mappingM2 allows a reduction of the total execution time by a factor 1:1 compared to the mappingM1.
With respect toM1, mappingM2 decreases the share of IVM-management operations from 18%to 7:5%. Table3
shows the average duration per call of the kernelsbound (in msec),goToNext anddecode (in msec) and their
respective share of the elapsed time (in %). The kernelsprune andshare amount for at less than 2% of total
execution time, so they are not evaluated.
The mappingM2 allows to use the supplementary lanes for ef�cient loadingof the IVM structures into shared

memory. In order to dissociate the impact of shared memory usage from the impact of remapping, the pro�ling of
mappingM2 is performed with and without shared memory usage.
Table3 also shows the instruction replay overhead (IRO%)3, which is a measure for instruction serialization (due

3de�ned asIRO% = 100%� instructions issued � instructions executed
instructions issued

18

Table 4: Per-call average of branch instructions executed and diverging branches (incremented by one per branch evaluated differently across a
warp). InstanceTa022.

kernel goToNext decode share prune
mapping branch diverge branch diverge branch diverge branch diverge

1 thread/IVM (M1) 11592 802 5875 860 851 15 404 121
1 warp/IVM (M2) 59921 1536 62020 768 3655 0 3131 768

=2� #IVM =#IVM =#IVM

to memory operations only). These results show that the factof spacing the mapping to 1 warp= 1 IVM also sub-
stantially improves the memory access pattern. It should benoted that the metriccontrol �ow ef�ciency, used in
Subsection5.3drops from a poor average 0:22 forM1 to 0:03� 1=32 forM2 - as intended. Table4 shows, for the
different kernels, the number of branch instructions executed (per call average) and the number of branches that
are evaluated differently across a warp. The results show that, as intended, undesired thread divergence completely
disappears. Only instanceTa022is evaluated as one instance suf�ciently illustrates the behaviour.
Thedivergent branch counter indicates that the average number of diverging branches is a multiple of the

number of IVMs. Indeed, the counter increments by one at the instructionif(thId%32 == 0) (Algorithm 9,
line 5) which masks all but the leading thread in each warp. However, as the remaining 31 lanes of the warp are
simply waiting for lane 0 to complete, no signi�cant serialization of instructions occurs. Besides showing that
the spaced mappingM2 is better adapted to the IVM-management kernels, the results presented in this subsection
illustrate that performance metrics for thread divergenceor control �ow must be interpreted very carefully.

5.5. Scalability and stability analysis

Table 5: Groups of similar-sized �owshop instances (20 jobs� 20 machines) and the corresponding average number of nodes decomposed
when initialized with the optimal solution.

Instance group #decomposed nodes Instances Average #decomposed nodes
small < 10M Ta028,Ta029,Ta030 5:5M

medium 2 [10M;50M] Ta021,Ta022,Ta024,Ta025 36:3M
large 2 [50M;100M] Ta026,Ta027 64:3M
huge > 100M Ta023 140:8M

In this subsection the behavior of the algorithm according to the instance sizes and its scalability with the
number of used IVM structures (T) is examined. The algorithm's performance for problem instances of different
sizes is compared in terms of node processing speed (#decomposed nodes/second), which is computed from wall-
clock time. Obviously, using more explorers can only be bene�cial if they can be supplied with enough work.
Therefore, the relationship between instance-size, the node processing speed andT needs to be studied for both
proposed WS strategies, as they strongly impact this relationship. For the experimental study of scalability only
the best version of the previous subsection is considered, i.e. the one using parallel remapping for the bounding
kernel and the spaced mappingM2 for the management kernels. Another factor that has a signi�cant impact on the
algorithm's performance is the irregularity of the explored B&B tree, which is very hard to quantify. In order to
obtain a clearer dissociation between tree-size and tree-irregularity, the average node processing speed for instances
of similar size is considered. The instances have been grouped as shown in Table5.

Figure11 shows the average node processing speed for these four groups of instances, according to different
values ofT and WS strategies 1D-Ring and 2D-Ring.T is chosen as a multiple of 64, as the GK110 architecture
allows up to 64 warps per SM and the management kernels reserve one warp per IVM. The number of ringsR in
the 2D-Ring WS strategy is chosen such thatR dividesT while being as close to

p
T as possible – the goal being

to approach the ideal con�guration whereRequals the ring-sizeC.
From Figure11 one can see that the node processing speed forsmall instances is lower than for intermediate-

sized instances, regardless of parameterT or the used WS strategy. This is partially due to warm-up and shut-down
phases of the parallel exploration, which, forsmallinstances last relatively long with respect to the total exploration
time. In these phases a low overall workload limits the degree of parallelism and the WS mechanism must handle
sharp variations of the workload. Using the 2D-Ring topology signi�cantly improves the nodes-per-second rate

19

Figure 11: Average node processing speed for groups of instancessmall, medium, large, huge(Table5), andT = k� 256(k = 1;2; :::;6).
Left: 1D-Ring work stealing ;Right: 2D-Ring work stealing with dimensionsR� C = 16� 16, 16� 32, 24� 32, 32� 32, 32� 40 and 32� 48

Figure 12:*IVM-ef�ciency= decomposed nodes
iterations� #IVM , measures the overall share of IVM structures in theexploringstate. An IVM-

ef�ciency of 1 indicates that each IVM decomposes a node at each iteration.

for small instances, as the reduced diameter of the 2D-Ring accelerates the distribution of the workload. Another
reason for the poorer performance onsmall is that the �ner granularity of allocated tasks per IVM does not allow
one to hide the initialization costs as ef�ciently as in larger instances. Similarly, the nodes-per-second performance
for mediuminstances is below the performance forlargeandhugeinstances. As the groupslargeandhugedo only
count one, respectively two members, the results for these groups must be interpreted more carefully – however,
they suggest that the node processing speed for large or verylarge instances is less in�uenced by the tree's size.
The size of the instance also impacts the scalability of the algorithm with T, especially when the 2D-ring WS
strategy is used. Using the 2D-Ring topology, forsmall-sized problems the best value forT improves performance
to � 120k nodes/sec from� 85k nodes/sec for the worstT, while for large-sized problems the node processing
speed doubles from� 105 to� 210k nodes/sec, doing the same comparison.

Comparing both WS strategies, one can see from Figure11 that the 2D-ring topology improves the scalability
of the algorithm. Indeed, for the 1D-Ring almost no performance is gained aboveT = 768 because additional
workers are left idle or inef�ciently initializing. In contrast, the 2D-Ring strategy allows one to use up toT = 1280
IVMs ef�ciently. For T = 1536, and only when using the 2D-Ring WS strategy, performance drops signi�cantly
for all instance sizes. The most likely explanation for thisperformance drop is that the computation of the bounds
is partially serialized due to hardware limitations. On average, each node decomposition leads to the evaluation
of approximately 20 bounds, for all considered instance-sizes. So, if allT = 1280 IVMs are busy, 25600 bounds
are evaluated per average iteration, which is close to the hardware limit of 26624 concurrent threads (13 SM� 64
warps/SM� 32 threads/warp) for the GK110 architecture. Therefore, supposing a well balanced workload, no
performance improvement can be expected from increasingT beyond 1280 on this device and at constant tree-size

However, Figure12 shows that there is some margin left to increase the percentage of busy explorers. In

20

Figure 13: Scaling with T of the medium-sized instances

order to measure the overall ef�ciency of the WS strategies,the number of decomposed nodes is divided by
(#iterations� #IVM), which gives a measure for the portion of IVMs doing meaningful work. If thisIVM-ef�ciency
equals 1, then each IVM decomposes a node at each iteration – if it equals 0, then all IVMs remain idle for an
in�nity of iterations. An IVM-ef�ciency of 0:5 indicates that an average IVM spends half of its iterationsidle
or initializing. The results shown in Figure12 con�rm that the 2D-Ring WS allows to keep more explorers
busy. Moreover, the fact that atT = 1536 no sharp degradation of the IVM-ef�ciency occurs, con�rms that
the performance drop atT = 1536 is due to hardware limitations. One can also see in Figure 12 that for small
andmediuminstances the IVM-ef�ciency is lower than for larger instances. This explains the relatively poorer
performances for these instances. The smaller the instancebeing solved, the likelier it becomes that a given IVM
frequently steals intervals that are explored within a few or zero iterations. In that case, the cost of initialization is
not covered by meaningful work. Without anya priori knowledge concerning the amount of work contained in a
given interval, it seems dif�cult to resolve this problem.

Concerning the algorithm's sensitivity towards the irregularity of the tree structure, the performances obtained
when solving same-sized instances are compared in Figure13. Figure13 zooms on the scalability withT of
the three instances with� 40M nodes. For all three instances the performance drop increasing the number of
IVMs from T = 1280 toT = 1536 is clearly visible. Figure13 also shows that the instance-irregularity impacts
performance signi�cantly. Exploring a roughly equal number of nodes, the peak node processing speed attained for
instanceTa024is 202k nodes/sec while it remains below 175k nodes/sec for instancesTa021andTa025. However,
in sequential executionTa024has the best nodes-per-second rate of these three instances, which means that the
performance gap is not due to a higher number of nodes in the upper part of the tree (which are more costly
to evaluate). The performance variety under same-sized instances rather seems to be due to sharper workload
variations for instancesTa021andTa025. Although for the three instances the proposed 2D-Ring strategy scales
nicely up to 1280 IVM structures, it apparently has a moment of inertia which makes the algorithm sensitive to
rapid workload variations. Maybe this gap can be closed witha further improved WS strategy, in the sense that the
WS strategy should deliver a faster response to those variations. This is a dif�cult task, in particular because IVM
need to go through initialization after the reception of a new work unit.

5.6. Comparison with GPU-accelerated linked-list-based B&B

In this subsection the best version (according to the previous experimentations) of the IVM-based GPU-B&B
is compared to the GPU-accelerated B&B presented in [1] which uses a conventional linked-list for the storage
and management of the pool of subproblems. The linked-list-based GPU-B&B (GPU-LL) algorithm is described
in Subsection1.3. Like the IVM-based GPU-B&B, GPU-LL performs a depth-�rst search, retaining after each
branching the better of two generated pools (as described inSubsection1.1). Moreover, both algorithms use the
same device function to compute the lower bounds for a given subproblem. Table6 shows the elapsed time for
solving each of the ten 20-job instances, as well as the number of decomposed nodes per second, in order to
take into account the size of the instances. The average timespent by the IVM-based GPU-B&B for exploring
the ten instances is 229:7 seconds, while the GPU-LL algorithm requires on average 865:6 seconds for the same
tasks. In terms of node processing speed, the GPU-IVM algorithm decomposes on average 3:3 times more nodes
per second than its linked-list counterpart. The IVM-basedGPU-B&B outperforms GPU-LL by at least a factor

21

Table 6: Elapsed execution time and number of decomposed nodes per second (in 1000 nodes/sec) for the IVM-based GPU-B&B (GPU-IVM)
and the GPU-accelerated linked-list-based B&B [1] (GPU-LL), described in Subsection1.3. The GPU-IVM algorithm uses the 2D-ring work
stealing strategy andT = 1280 IVMs for all instances. Results for instancesTa021-Ta030.

GPU-LL GPU-IVM
Instance elapsed k nodes/sec elapsed k nodes/secratio
21 833 49.7 242 171.1 3.4
22 415 53.3 134 163.6 3.1
23 3089 45.6 740 189.6 4.2
24 738 54.3 200 202.2 3.7
25 865 47.9 239 173.1 3.6
26 1292 55.3 348 205.6 3.7
27 1094 52.2 268 213.3 4.1
28 171 47.4 53 152.0 3.2
29 125 54.4 56 121.4 2.2
30 34 47.1 17 94.6 2.0
Average 865.6 50.7 229.7 168.6 3.3

2 for all ten instances. The highest nodes-per-second performance is attained for instanceTa027, decomposing
213;000 nodes/sec, which is almost 4 times more than the highest rate attained by the linked-list-based algorithm.
As examined in Subsection5.5, for the GPU-IVM algorithm the node processing speed variesfrom one instance
to another, depending on the instance's size and irregularity. In contrast, as the GPU-LL algorithm regularizes the
workload by dynamically adapting the size of the of�oaded pools it provides an almost constant node processing
speed for all instances. This performance variety is discussed in Subsection5.5 – while further improved WS
strategies should allow to reach a higher node processing speed for small instances, the algorithm needs to be
extended a to a multi-GPU version in order to improve the performance for larger instances.

6. Conclusions and future work

Our paper proposes a GPU-based branch-and-bound (B&B) parallel algorithm which performs all B&B oper-
ators on the GPU. During the exploration of the B&B-tree the CPU is only used for launching the CUDA-kernels
in a loop until a boolean variable, which the CPU receives at each iteration from the GPU, indicates the end of
the algorithm. To the best of our knowledge, our GPU-based B&B algorithm is the �rst one that does not rely
on the transfer of pools of subproblems between host and device. The proposed approach is based on the Integer-
Vector-Matrix (IVM) data structure, better adapted to the GPU than linked-list-based data structures, which are
conventionally used for the storage and management of the pool of subproblems. The algorithm has two levels of
parallelism. On a lower level it ef�ciently uses up to 1280 IVM structures to perform the branching, selection and
pruning operators in parallel, exploring different parts of the B&B tree simultaneously. For each exploring IVM
the bounding operator is in turn parallelized, leading to anincreased overall degree of parallelism in the bounding
phase. At the junction of the two levels a remapping phase is introduced in order to adapt the con�guration and the
mapping of the bounding kernel to the varying workload. While the mapping for the bounding is compacted, the
mapping in the management phase – characterized by a very high number of data-dependent conditional instruc-
tions – is spaced, adding idle threads to the kernel. As a result, the bounding phase is accelerated on the one hand,
as the control �ow ef�ciency is improved – on the other hand, in the IVM-management phase the opposed strategy
is better adapted, as it reduces thread divergence and improves memory accesses.
We have proposed two work stealing strategies for work load balancing and analyzed the scalability of our algo-
rithm with respect to both strategies. The reported experimental results show that the performance of the proposed
algorithm depends crucially on the choice of the mapping, aswell as on the used work stealing strategy. The
proposed GPU-IVM algorithm explores the B&B-trees of 10 Taillard's �owshop instancesTa021-Ta030on av-
erage with a 3:3 times higher node processing speed than a GPU-acceleratedlinked-list-based B&B (GPU-LL)
algorithm. For all instancesTa021-Ta030the GPU-IVM algorithm outperforms the GPU-LL algorithm at least by
a factor 2:0 and by up to a factor 4:0 on large instances, where our GPU-IVM algorithm reaches its best perfor-
mances.

As a future work we plan to investigate other work stealing strategies for the IVM-based GPU-B&B algorithm.
We also plan to extend our algorithm to a multi-GPU and to a hybrid multi-core/multi-GPU Branch-and-Bound

22

algorithm capable of solving large instances of permutation-based combinatorial problems.

[1] I. Chakroun, N. Melab,Operator-level gpu-accelerated branch and bound algorithms, in: Proceedings of the International Conference on
Computational Science, ICCS 2013, Barcelona, Spain, 5-7 June, 2013, 2013, pp. 280–289.
URL http://dx.doi.org/10.1016/j.procs.2013.05.191

[2] T. Carneiro, A. Muritiba, M. Negreiros, G. Lima de Campos, A New Parallel Schema for Branch-and-Bound Algorithms Using
GPGPU, in: 23rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2011, pp. 41–47.
doi:10.1109/SBAC-PAD.2011.20 .

[3] M. Lalami, D. El-Baz,Gpu implementation of the branch and bound method for the knapsack problems, in: Parallel and Distributed Pro-
cessing Symposium Workshops, 2012 IEEE 26th International, IPDPSW '12, IEEE, 2012, pp. 1769–1777.
URL http://dx.doi.org/10.1109/IPDPSW.2012.219

[4] N. Melab, I. Chakroun, A. Bendjoudi, Graphics processing unit-accelerated bounding for branch-and-bound appliedto a permutation
problem using data access optimization, Concurrency and Computation: Practice and Experience 26 (16) (2014) 2667–2683.

[5] R. Leroy, M. Mezmaz, N. Melab, D. Tuyttens, Work stealingstrategies for multi-core parallel branch-and-bound algorithm using factorial
number system, in: Proceedings of Programming Models and Applications on Multicores and Manycores, PMAM'14, ACM, New York,
NY, USA, 2007, pp. 111:111–111:119.doi:10.1145/2560683.2560694 .

[6] M. Mezmaz, R. Leroy, D. Tuyttens, N. Melab,A multi-core parallel branch-and-bound algorithm using factorial number system, in: Par-
allel and Distributed Processing Symposium, 2014 IEEE 28thInternational, IPDPS '14, IEEE, 2014.
URL http://dx.doi.org/10.1109/IPDPS.2014.124

[7] B. Goldengorin, D. Ghosh, G. Sierksma, Branch and peg algorithms for the simple plant location problem, Computers & Operations
Research 31 (2004) 241–255.

[8] R. Pastor, A. Corominas, Branch and win: Or tree search algorithms for solving combinatorial optimisation problems, Top 1 (2004)
169–192.

[9] S. Climer, W. Zhang, Cut-and-solve: an iterative searchstrategy for combinatorial optimization problems, arti�cial intelligence 170
(2006) 714–738.

[10] N. Melab, Contributions �a la résolution de probl�emes d'optimisation combinatoire sur grilles de calcul, LIFL,USTL, th�ese HDR (Novem-
bre 2005).

[11] V. Cung, S. Dowaji, B. L. Cun, T. Mautor, C. Roucairol, Parallel and distributed branch-and-bound/A* algorithms, Tech. Rep. 94/31,
Laboratoire PRISM, Université de Versailles (1994).

[12] B. Gendron, T. Crainic, Parallel Branch and Bound Algorithms: Survey and Synthesis, Operations Research 42 (1994)1042–1066.
[13] M. Mezmaz, N. Melab, E.-G. Talbi., A grid-enabled branch and bound algorithm for solving challenging combinatorial optimization

problems, in: In Proc. of 21th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS), Long Beach, California, 2007.
[14] I. Chakroun, M. Mezmaz, N. Melab, A. Bendjoudi, Reducing thread divergence in a gpu-accelerated branch-and-boundalgorithm,

Concurrency and Computation: Practice and Experience 25 (8) (2013) 1121–1136.doi:10.1002/cpe.2931 .
[15] G. Cantor, Ueber die einfachen zahlensysteme (1869).
[16] C.-A. Laisant, Sur la numération factorielle, application aux permutations, Bulletin de la Société Mathématique de France 16 (1888)

176–183.
[17] D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Reading, Ma (1997) 192ISBN=9780201896848.
[18] J. McCaffrey, Using permutations in .NET for improved systems security (2003).
[19] I. Chakroun, Parallel heterogeneous branch and bound algorithms for multi-core and multi-gpu environments, Ph.D. thesis, Université

Lille 1 (2013).
[20] S. Xiao, W.-c. Feng, Inter-block gpu communication viafast barrier synchronization, in: 2010 IEEE InternationalSymposium on Parallel

Distributed Processing (IPDPS), 2010, pp. 1–12.doi:10.1109/IPDPS.2010.5470477 .
[21] J. Lenstra, B. Lageweg, A. R. Kan, A General bounding scheme for the permutation �ow-shop problem, Operations Research 26 (1)

(1978) 53–67.
[22] S. Johnson, Optimal two and three-stage production schedules with setup times included, Naval Research Logistis Quarterly 1 (1954)

61–68.
[23] M. Harris, S. Sengupta, J. D. Owens, Parallel pre�x sum (scan) with cuda, in: H. Nguyen (Ed.), GPU Gems 3, Addison Wesley, 2007.
[24] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, S. Krishnamoorthy,Lifeline-based global load balancing, in: Proc. of the 16th sym-

posium on Principles and pratice of parallel programming, PPoPP '11, ACM, New York, NY, USA, 2011, pp. 201–212.
URL http://doi.acm.org/10.1145/1941553.1941582

[25] M. Garey, D. Johnson, R. Sethi, The complexity of �ow-shop and job-shop scheduling, Mathematics of Operations Research 1 (1976)
117–129.

[26] E. Taillard, Benchmarks for basic scheduling problems, Journal of Operational Research 64 (1993) 278–285.

23

	1 Parallel branch-and-bound algorithms
	1.1 Sequential branch-and-bound

	2 IVM-based Branch and Bound

