Stabilization in a chemostat with sampled and delayed measurements

Abstract : — We study control problems for chemostat models with one species, one limiting substrate, and a constant sub-strate input concentration. We allow Haldane growth functions and other growth functions that are not necessarily monotone. The measurement is assumed to be the substrate concentration, which is piecewise constant with a constant delay. Under conditions on the size of the delay and on the largest sampling interval, we solve the problem of asymptotically stabilizing a componentwise positive equilibrium point with the dilution rate as control. We use a new type of Lyapunov approach.
Type de document :
Communication dans un congrès
2016 American Control Conference (ACC), Jul 2016, Boston United States. pp.1857 - 1862, 2016, 〈10.1109/ACC.2016.7525189〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01389864
Contributeur : Frederic Mazenc <>
Soumis le : dimanche 30 octobre 2016 - 09:54:12
Dernière modification le : vendredi 27 avril 2018 - 14:42:02

Fichier

acc16jeje.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Frédéric Mazenc, Jérome Harmand, Michael Malisoff. Stabilization in a chemostat with sampled and delayed measurements. 2016 American Control Conference (ACC), Jul 2016, Boston United States. pp.1857 - 1862, 2016, 〈10.1109/ACC.2016.7525189〉. 〈hal-01389864〉

Partager

Métriques

Consultations de la notice

300

Téléchargements de fichiers

88