N

N

Dynamic memory-aware task-tree scheduling

Guillaume Aupy, Clément Brasseur, Loris Marchal

» To cite this version:

Guillaume Aupy, Clément Brasseur, Loris Marchal. Dynamic memory-aware task-tree scheduling.
[Research Report] RR-8966, INRIA Grenoble - Rhone-Alpes. 2016. hal-01390107

HAL Id: hal-01390107
https://inria.hal.science/hal-01390107
Submitted on 31 Oct 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01390107
https://hal.archives-ouvertes.fr

V4

: informatics , mathematics

Dynamic memory-aware
task-tree scheduling

Guillaume Aupy, Clément Brasseur, Loris Marchal

ISRN INRIA/RR--8966--FR+ENG

RESEARCH
REPORT

N° 8966

October 2016

ISSN 0249-6399

Project-Team ROMA

V4

: in]armutics,mathemutics

Dynamic memory-aware task-tree scheduling

Guillaume Aupy*, Clément Brasseur’, Loris Marchal
Project-Team ROMA

Research Report n® 8966 — October 2016 — 38 pages

Abstract: Factorizing sparse matrices using direct multifrontal methods generates directed tree-
shaped task graphs, where edges represent data dependency between tasks. This paper revisits
the execution of tree-shaped task graphs using multiple processors that share a bounded memory.
A task can only be executed if all its input and output data can fit into the memory. The key
difficulty is to manage the order of the task executions so that we can achieve high parallelism while
staying below the memory bound. In particular, because input data of unprocessed tasks must be
kept in memory, a bad scheduling strategy might compromise the termination of the algorithm. In
the single processor case, solutions that are guaranteed to be below a memory bound are known.
The multi-processor case (when one tries to minimize the total completion time) has been shown
to be NP-complete. We present in this paper a novel heuristic solution that has a low complexity
and is guaranteed to complete the tree within a given memory bound. We compare our algorithm
to state of the art strategies, and observe that on both actual execution trees and synthetic trees,
we always perform better than these solutions, with average speedups between 1.25 and 1.45 on
actual assembly trees. Moreover, we show that the overhead of our algorithm is negligible even on
deep trees (10°), and would allow its runtime execution.

Key-words: scheduling; memory; trees.

* University of Vanderbilt, Nashville TN, USA
T CNRS, LIP, Ecole Normale Supérieure de Lyon, INRIA, France

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Dynamic memory-aware task-tree scheduling

Résumé : La factorisation de matrices creuses a 'aide de méthodes directes
multifrontales génere des arbres enracinés de taches, ou les arrétes représentent
des dependences de données. Ce papier revisite I'exécution de ces arbres de
taches sur multi-processeurs avec mémoire bornée. Une tache ne peut étre
exécutée que si ses entrées et sorties tiennent en mémoire. La difficulté principale
tient en la gestion de I'ordre d’exécution des taches pour atteindre un grand
parallélisme tout en respectant la contrainte mémoire. En particulier, une fois
calculées, les entrées d’une tache non exécutée doivent étre gardées en mémoire.
De mauvais choix algorithmiques peuvent conduire a une sur-consommation
mémoire et ainsi compromettre la terminaison du traitement de I'arbre.

Des solutions qui garantissent des bornes sur la consommation mémoire sont
connues dans le cas mono-processeur. Le cas multi-processeur ot 'on essaie
de minimiser le temps d’exécution est NP-complet. Nous présentons dans ce
papier une nouvelle solution heuristique a faible complexité et qui garantit la
terminaison pour des bornes mémoires dans le cas multi-processeur. Nous nous
comparons aux heuristiques les plus récentes et montrons la dominance de notre
solution.

Mots-clés : ordonnancement; mémoire; arbres.

Dynamic memory-aware task-tree scheduling 3

1 Introduction

Parallel workloads are often modeled as task graphs, where nodes represent
tasks and edges represent the dependencies between tasks. There is an abundant
literature on task graph scheduling when the objective is to minimize the total
completion time, or makespan. However, with the increase of the size of the data
to be processed, the memory footprint of the application can have a dramatic
impact on the algorithm execution time, and thus needs to be optimized. This is
best exemplified with an application which, depending on the way it is scheduled,
will either fit in the memory, or will require the use of swap mechanisms or out-
of-core. There are very few existing studies that take into account the memory
footprint when scheduling task graphs, and even fewer of them targeting parallel
systems.

In the present paper, we consider the parallel scheduling of rooted in-trees.
The vertices of the trees represent computational tasks, and its edges represent
the dependencies between these tasks, which are in the form of input and output
data: each task requests for its processing all the data produced by its children
tasks to be available in memory, and outputs a new data for its parent. We want
to process the resulting task tree on a parallel system made of p computing units,
also named processors, sharing a global memory of limited size M. At any time,
the size of all the data currently produced but not yet consumed cannot exceed
M. Our objective is to minimize the makespan, that is, the total time needed
to process the whole task tree, under the memory constraint.

The motivation for this work comes from numerical linear algebra, and espe-
cially the factorization of sparse matrices using direct multifrontal methods [6].
During the factorization, the computations are organized as a tree workflow
called the elimination tree, and the huge size of the data involved makes it ab-
solutely necessary to reduce the memory requirement of the factorization. Note
that we consider here that no numerical pivoting is performed during the fac-
torization, and thus that the structure of the tree, as well as the size of the data
are known before the computation really happens.

In this paper, we mainly build on two previous results. On the theoretical
side, we have previously studied the complexity of the bi-criteria problem which
considers both makespan minimization and peak memory minimization [7], and
we have proposed a few heuristic strategies to schedule task trees under hard
memory constraints. However, these strategies requires strong reduction prop-
erties on the tree. An arbitrary tree can be turned into a reduction tree, but this
increases its memory footprint, which limits the performance of the scheduler
under memory constraint. On the practical side, Agullo et al. [1] uses a sim-
ple activation strategy to ensure the correct termination of a multifrontal QR
factorization, whose task graph is an in-tree. Both approaches have drawbacks:
the first one artificially increases the peak memory of the tree, and the second
one overestimates the memory booked to process a subtree. Our objective is to
take inspiration from both to design a better scheduling algorithm.

Note that we are looking for a dynamic scheduling algorithm, that is, a
strategy that dynamically reacts to task terminations to activate and schedule

RR n° 8966

Dynamic memory-aware task-tree scheduling 4

new nodes. We suppose that only the tree structure and the data sizes are known
before the execution, not the task processing times, so that one cannot rely on
them to build a perfect static schedule. Finally, the scheduling complexity
should be kept as low as possible, since scheduling decision need to be taken
during the computation without delaying the task executions.

Our contributions are as follows:

e We provide a novel heuristic along with a proof of its termination for
memory bounds.

e We provide data-structure optimizations to improve its computational
complexity.

e We provide a thorough experimental study, both on actual and synthetic
trees to show its dominance over state of the art algorithms.

e We propose a new makespan lower bound for memory-constrained parallel
platforms.

The rest of the paper is organized as follows. We first present the problem, its
notation and formalize our objective in Section 2. We then review related work
and the two existing approaches listed above in Section 3. Next, we present our
new scheduling algorithms, as well as the proof of its correctness in Section 4.
Then, we propose a memory-aware makespan lower bound in Section 6. Finally,
we present a set of comprehensive simulations to assess the benefit of the new
algorithm 7, before presenting concluding remarks in Section 8

2 Model and objectives

2.1 Application model

Let T be a rooted in-tree (dependencies point toward the root) composed of n
nodes, the tasks, denoted by their index 1,...,n. A node i is characterized by
its input data (one per child), its execution data (of size n;), and its output
data (of size f;). When processing node 4, all input, execution and output data
must be allocated in memory. At the termination of node i, input and execution
data are deallocated, and only the output data stays in memory. We denote
by Children(i) the set of children of node ¢, which is empty is ¢ as a leaf. The
memory needed for the processing of node 4, illustrated on Figure 1, is given by:

MemNeeded; = Z fi] +ni+ fi (1)
j€ Children(i)

2.2 Platform model

We consider a shared-memory parallel platform, composed of p homogeneous
processors onto which each task can be computed. Those processors share a
limited memory of size M.

RR n° 8966

Dynamic memory-aware task-tree scheduling 5

Figure 1: Input, execution and output data of a node ¢ with children j,... 7,
and parent k.

2.3 Objectives

Our objective here is to minimize the makespan, that is the total execution
time, while keeping the size of the data stored in memory below the bound M.
This problem is a variant of the bi-criteria problem which aims at minimizing
both the makespan and the peak memory. Note that those two objective are
antagonist: the best way to minimize the makespan is to parallelize as much as
possible without regard to the memory used, while the best way to minimize the
peak memory used is to execute the whole schedule on a single processor which
would give the worse makespan. In a previous study [7], we have proven that
this bi-criteria problem was NP-complete and inapproximable within constants
factors of both the optimal memory and the optimal makespan. Our variant
clearly inherits this complexity and in this study, we are mainly looking for
heuristic solutions.

Note that the algorithms under considerations are natural candidates to
replace the simple activation scheme of [1]. Thus, their runtime complexity
is critical, as we want to take scheduling decisions very fast. While a notable,
say quadratic, complexity is acceptable in the initial preprocessing phase, we are
looking for O(1) complexity at each task termination, or eventually logarithmic.

3 Related work and existing algorithms

Memory and storage have always been a limited parameter for large computa-
tions, as outlined by the pioneering work of Sethi and Ullman [13] on register
allocation for task graphs. In the realm of sparse direct solvers, the problem
of scheduling a tree so as to minimize peak memory has first been investigated
by Liu [11] in the sequential case: he proposed an algorithm to find a peak-
memory minimizing traversal of a task tree when the traversal is required to
correspond to a postorder traversal of the tree. A follow-up study [10] presents
an optimal algorithm to solve the general problem, without the postorder con-
straint on the traversal. Postorder traversals are known to be arbitrarily worse
than optimal traversals for memory minimization [8]. However, they are very
natural and straightforward solutions to this problem, as they allow to fully

RR n° 8966

Dynamic memory-aware task-tree scheduling 6

process one subtree before starting a new one. Therefore, they are widely used
in sparse matrix software like MUMPS [3, 4], and achieve good performance on
actual elimination trees [8].

The problem of scheduling a task graph under memory or storage constraints
also appears in the processing of scientific workflows whose tasks require large
I/0 files. Such workflows arise in many scientific fields, such as image processing,
genomics, and geophysical simulations. The problem of task graphs handling
large data has been identified by Ramakrishnan et al. [12] who propose some
simple heuristics. In the context of quantum chemistry computations, Lam et
al. [9] also consider task trees with data of large size.

Note that peak memory minimization is still a crucial question for direct
solvers, as highlighted by Agullo et al. [2], who study the effect of processor
mapping on memory consumption for multifrontal methods.

We now review the two scheduling strategies from the literature that target
our problem.

3.1 Simple activation heuristic

Agullo et al.[1] use a simple activation strategy to ensure that a parallel traversal
of a task tree will process the whole tree without running out of memory. The
first step is to compute a postorder traversal, such as the memory-minimizing
traversal of [11]. This postorder traversal, denoted by AO, will serve as an order
to activate tasks. This solution requires that the available memory M is not
smaller than the peak memory M, of the activation order. The strategy is
summarized in Algorithm 1. The activation of a task ¢ consists in allocating
all the memory needed for this tasks. Then, only tasks that are both activated
and whose dependency constraints are satisfied (i.e., all predecessors in the tree
are already processed) are available for execution. Another scheduling heuristic
may be used to choose which tasks the among available ones are executed: we
denote by EO the order giving the priority of the tasks for execution. Note that
available nodes are nodes whose children have been completed.

This simple procedure is efficient to schedule task trees without exceeding
the available memory. However, it may book too much memory, and thus limit
the available parallelism in the tree. Consider for example a chain of tasks
Ty — Ty — T3. Algorithm 1 will first book ni + f; for task T3, then ns + fo for
T, and finally ng + f5 for T3 (assuming all this memory is available). However,
no two tasks of this chain can be scheduled simultaneously because of their
precedence order. Thus, it is not necessary to book ni, no and ng at the same
time, nor is it necessary to book memory for f; and f3: the memory used for
Ty can be later reused for the processing of T and T5. By booking memory in
a very conservative way, this heuristic may prevent nodes from other branches
to be available for computation, and thus delay the processing of these nodes.

RR n° 8966

Dynamic memory-aware task-tree scheduling 7

Algorithm 1: AcTivAaTION(T,p, AO, EO, M)

1 MBooked +~0
2 ACT + 0
3 while the whole tree is not processed do
4 Wait for an event (task finishes or ¢ = 0)
// Free the memory booked by j
foreach just finished node j do Mpooked < MBookeda — 1j — EjEC’hzldren(i) fi
6 continueActivation < true
7 while continueActivation do
// Activate the first node i of AO if possible
8 i < pop(AO)
9 if MBooked + ni + fi < M then
10 ‘ MBooked = MBooked + 1i + fi
11 push(i, ACT)
12 else
13 push(i, AO)
14 L continueActivation < false
// Process available nodes in ACT following priority order FO
15 while there is an available processor P, and there is an available node in
ACT do
16 Let ¢ be the available node in ACT with maximal priority in FO:
Remove(i, ACT)
17 Make P, process %

3.2 Booking strategy for reduction trees

In a previous publication [7], we have proposed a novel activation policy based on
a refined memory booking strategy. However, our strategy is limited to special
trees, also called reduction trees, who exhibit the following two properties:

e There is no execution data, i.e., n; = 0 for each node i;

e The size of the output of each node is smaller than the size of its inputs,
that is, fi <3~ e cnitaren(i) i

Using these two properties, we are able to prove that the memory has been
successfully booked for all the leaves of a subtree, all nodes in this subtree can
be processed without additional memory. Moreover, we know how to compute
the amount of booked memory that each completing node has to transmit to
its parent.

Contrarily to the previous algorithm, this complex strategy allows to cor-
rectly predict the amount of memory that needs to be booked for a given subtree.
However, it only applies to special trees, namely reduction trees. General trees
may be transform into reduction trees by adding fictitious edges. However this
increases the overall peak memory needed for any traversal, which limits its
interest —we have indeed noticed that it does not give better performance than

RR n° 8966

Dynamic memory-aware task-tree scheduling 8

Algorithm 1 on general trees—. Furthermore, in some cases it makes it a key
limitation for general trees with limited memory as it does not always allow for
the completion of those trees.

4 A dynamic fast algorithm

In this section, we propose a novel algorithm, named MEMBOOKING to schedule
trees under limited memory, that overcomes the limitations of the previous two
strategies. Similarly as in Algorithm 1, we rely on the activation of nodes, fol-
lowing an activation AO which is guaranteed to complete the whole tree within
the prescribed memory in the case of a linear execution. However, activating a
node does not correspond here to booking the exact memory n; + f; needed for
this node: some of this memory will be transfered by some of its descendant in
the tree, and if needed, we only book what is absolutely needed. The core idea
of the algorithm is the following: when a node completes its execution, we want
(i) to reuse the memory that is freed on one of its ancestors and (ii) perform
these transfers of booked memory in an As Late As Possible (ALAP) fashion.
More precisely, the memory freed by a completed node j will only be transfered
to one of its ancestors i if (a) all the descendants of ¢ have enough memory to
be executed (that is, they are activated), and (b) if this memory is necessary
and cannot be obtained from another descendent of ¢ that will complete its ex-
ecution later. Finally, an execution order FO states which of the activated and
available nodes should be processed whenever a processor is available.

In order to keep track of all nodes, we use five states to descrive them (a
node can only be in one state), which we present in reverse order of their use
for a given node:

1. Finished (FN): This corresponds to nodes which have completed their
execution.

2. Running (RUN): This corresponds to nodes being executed.

3. Activated (ACT): This corresponds to nodes for which we have booked
enough memory (some of this memory might be booked by some descen-
dant in the subtree).

4. Candidate for activation (CAND): This corresponds to nodes which are
the next to be activated, that is, all their descendant have been activated
but they are not activated yet. This is the initial state for all leaves.

5. Unprocessed (UN): This corresponds to nodes which have not yet been
considered; it is the initial state for all interior nodes.

Because a node can only have be in one state at a given time, we write j € UN
(resp. CAND, ACT, RUN, FN) if node j is in the corresponding state.

We now present the MEMBOOKING algorithm (Algorithm 2), as well as its
proof of correctness. Some optimizations and data-structures used to reduce the

RR n° 8966

Dynamic memory-aware task-tree scheduling 9

time complexity will be presented later (the full algorithm with optimizations
is available in Appendix B).

Algorithm 2: MEMBOOKING(T, p, AO, EO, M)

// initialization of the memory
foreach node i do

Booked[i] + 0
L BookedBySubtree[i] + —1

MBonkEd 0

UN «+ T\ Leaves(T)
CAND <« Leaves(T)
ACT «+ 0

N O 0k W N

// main loop
8 while the whole tree is not processed do

9 Wait for an event (task finishes or ¢t = 0)
10 foreach just finished node j do
11 | DIsPATCHMEMORY (j)
12 UPDATECAND-ACT(CAND, ACT)
13 while there is an available processor P, and ACT # () do
14 Let i be the available node in ACT with maximal priority in FO:
Remove(i, ACT)
15 Make P, process %

Awailable nodes are nodes whose children have been completed.

At the beginning of the schedule, or each time a task completes, the MEM-
BOOKING algorithm performs these three consecutive operations:

1. Memory re-allocation: DISPATCHMEMORY (Algorithm 3) reallocates the
memory used by a node that just finished its execution. We present this
algorithm in Section 4.1.

2. Node activation: UPDATECAND-ACT (Algorithm 4) allocates the avail-
able memory following the activation order AO. We present this algorithm
in Section 4.2.

3. Node scheduling: the schedule is done following the execution order FO
amongst the nodes that are both activated and ready to be executed.

Note that while AO is a topological order, we do not have any constraint on
EO.
To be able to keep track of the memory allocated to each node, we use two
arrays of data that are updated during the computation, namely:
e Booked[l..n], which contains the memory that is currently booked in order
to process nodes 1 to n. We further call Mpoored = D ; Booked][i];
e BookedBySubtree[l..n], which sums the memory that is currently booked
by the subtree rooted in i € {1,...,n}.

RR n° 8966

Dynamic memory-aware task-tree scheduling 10

4.1 Memory re-allocation

When a node finishes its computation, the memory that was used during its
computation can be allocated to other nodes. Our memory allocation works in
two steps:

1. First we free the memory that was used by the node that has just finished
its execution. Note that we cannot free all the memory: if the node that
finished is not the root of the tree, then its output needs to be saved. In
that case we allocate this memory to its parent.

2. Then we allocate the memory freed to its ancestors in ACT following
an As Late As Possible strategy (meaning that if there is already enough
memory booked in the unfinished part of the subtree, we do not allocate it
to the root of the subtree but keep it for later use). We thus compute the
contribution C; ; of a terminated node j to its parent ¢ as the difference
between what is needed by node ¢ and what can be provided later by its
subtree.

Algorithm 3: DISPATCHMEMORY ()

/* First we free the memory used by j */
1 B = Booked|[j]
Booked(j] 0
2 MBDakcd — MBooked - B

BookedBySubtree[j] < BookedBySubtree[j] — B
3 i+ parent(j)
4 if i # NULL then

Booked[i] < Booked[i] + f;
5 MBooked — MBooked + f;
BookedBySubtree[i] < BookedBySubtree[i] + f;
6 B=B-— fj

/* Then we dispatch the memory used by j between its ancestors which are in
ACT, if it is neccessary */

7 while i # NULL and i € ACT U RUN and B # 0 do

8 Cj,i = max(0, MemNeeded; — (BookedBySubtree[i| — B))
Booked|i] <+ Booked[i] + Cj,;

9 MBooked < MBooked + Cj,i
BookedBySubtree[i] < BookedBySubtree[i] — (B — Cj ;)
10 B=B-Cj;:

11 | i< parent(i)

RR n° 8966

Dynamic memory-aware task-tree scheduling 11

4.2 Node activation

Our second algorithm, UPDATECAND-ACT, updates both ACT and CAND.
The key point of this sub-algorithm is that it is conceived such that nodes are
activated following the AO order. We formally show this result in Section 5
(Lemma 1).

Algorithm 4: UPDATECAND-ACT(CAND, ACT)

1 WaitForMoreMem < false

2 while |(WaitForMoreMem) and CAND # (do

3 Let ¢ be the node of CAND with maximal priority in AO

4 MissingMem,; =

max (0, MemNeeded; — (Booked[i] + 2 e Chitdren(i) BookedBySubtree[j]))

5 if Mpookeda + MissingMem,; < M then

Booked]i] < Booked[i] + MissingMem,

6 MBpooked < MBookea + MissingMem,

BookedBySubtree[i] <« Booked[i] + > ;c cpiigren(i) BookedBySubtree;]

7 remove(i, CAND); insert(i, ACT)
8 if Vj € Children(parent(t)), 7 ¢ UN U CAND then
9 L remove(parent (i), UN); insert(parent(i), CAND)
10 else
11 L WaitForMoreMem < true

5 Proof of correctness

In this section, we want to show the following result:

Theorem 1. IfT can be executed with a memory bound of M using the sequen-
tial schedule AO, then MEMBOOKING(T,p, AO, EO, M) processes T entirely.

To prove this theorem, we need to verify that the following conditions are
respected:

1. The memory used never exceed the memory limit M;
2. Each running task has enough memory to run;

3. No data is lost, that is, a result that was computed will not be overwritten
until it has been used;

4. All tasks are executed.

A necessary condition to prove items 1, 2 and 3 using the Booked|[1..n] introduced
earlier is to prove the following results:

RR n° 8966

Dynamic memory-aware task-tree scheduling 12

1. At all time,), Booked[i] < M;
2. If i € RUN, then Booked[i]| = MemNeeded,;

3. For all i ¢ FN, we cannot decrease the value of Booked[i]; finally, when
i is moved to FN, its output f; should be moved from Booked[i] to its
parent’s memory usage: Booked[parent(7)].

In the proofs, we decompose time according to the different events (Algo-
rithm 2, line 9): ¢; = 0 and when each task finishes. We know that to execute
the tree T of n tasks, there are at most n + 1 events (each task can finish only
once) that we denote tg = 0 < t; <--- <t, (in case a node is never executed,
we may write t; = +00).

As our algorithm updates its variables describing the tasks’ state and the
amount of booked memory for each node after each event, we consider time-
intervals |¢;,¢;41]: this corresponds to the status of the algorithm after the
modification of event t;.

We start by proving that nodes are activated in the right order.

Lemma 1. The nodes are moved from CAND to ACT following the AO order.

Proof. First, we notice that nodes are inserted in ACT only in Algorithm 4, on
line 7. Then one can verify that at all time, the element extracted from CAND
is the first one with respect to the AO ordering, ensuring that the elements
contained in CAND are extracted following AQO.

To show that elements are inserted in ACT following AO, we then only
need to prove that at all time, the next element according to AO is available in
CAND. That is, for all i € {1,--- ,n}, if for all j < i, AO(j) has been extracted
from CAND to ACT, then either AO(i) has been extracted from CAND to
ACT, or AO(i) € CAND. We prove this by induction.

Because AO is a topological order, then AO(1) is necessarily a leaf. Fur-
thermore, CAND initially contains all leaves, hence AO(1) € CAND.

Let ¢ > 1. Assume that for all j < i, AO(j) has been extracted from CAND
to ACT. If AO(i) has been extracted from CAND to ACT then the property
is true. Otherwise, either AO(4) is a leaf or an interior node. If it is a leaf, then
AO(i) € CAND because leaves were inserted initially and they can only be
removed from CAND when they are extracted to ACT. If AO(i) is an interior
node, let AO(i1),- -+, AO(iy,) be its children, because AO is a topological order,

then for j < m,i; < i. In particular, assume w.l.o.g that i, < --- < iy,, then
when AO(iy,) was extracted from CAND to ACT, then AO(i) was added to
CAND, hence showing the result. O

Then, we prove that until a node is activated, the only memory booked for
this node are for the results of its completed children.

Lemma 2. At any time t, if i € UN U CAND, then

Booked[i] = Z f;

j€ Children(i)NFN

RR n° 8966

Dynamic memory-aware task-tree scheduling 13

Proof. If i € UN U CAND, this means that until that time, ¢ has always been
either in UN or in CAND, and hence the only time when Booked[i] could have
been modified is by a call of DISPATCHMEMORY (Algorithm 3), more specifically
on line 5. This happens only when a child of 7 completes, and hence is moved
to F'N, which proves the result. O

Lemma 3. At any time t, if i € ACT U RUN, then

(1) > cnitdren(iynrn fi < Booked[d];
(2) MemNeeded; < BookedBySubtreeli]

(3) BookedBySubtreeli] =
Booked[i] +>_ i chitdren(i)n(AcTURUNU FN) BookedBySubtreelj].

Booked[i]: indeed, every time a child j of 4 finished its execution, DISPATCH-
MEMORY (Algorithm 3) added f; to Booked[:]. Furthermore, until ¢ is moved
to FN, the algorithm never subtracts anything from Booked][d].

Similarly, we have at all time MemNeeded; < BookedBySubtree[i]: it is the
case when 7 is moved from CAND to ACT, and all further transformations of
BookedBySubtree[i] preserve this result.

To show the third result, we proceed by induction on time. For simplicity,
let us denote by

Proof. First one can notice that for i € ACT U RUN, Zjechildmn(i)mFN fi <

BBS(i) = Booked]i] + > BookedBySubtree|;]
j€ Children(i)N(ACTURUNUFN)

Clearly the result is true at time tg = 0 since ACT U RUN = (). As-
sume the induction hypothesis: for all time ¢t < ¢;,, if i € ACT U RUN,
BookedBySubtree[i] = BBS(i). We now prove that the result holds during
the interval t;,,t;,+1] using a second induction on the tree structure, starting
from leaves.

We first assume that ¢ € ACT U RUN is a leaf. When i was moved from
CAND to ACT (using UPDATECAND-ACT), then the algorithm made sure
that the property was respected, then we notice that neither Booked[i] nor
BookedBySubtree[i] is modified for a leaf until that leaf is moved to FN, so the
result still holds.

We now consider an interior node i, € ACT U RUN such that the result
holds for all its descendants until ¢;,+; and the result holds for that node until
t;, (first induction hypothesis).

If i, was moved to ACT at time ¢;,, then one can verify by looking at
algorithm UPDATECAND-ACT that the result holds. Furthermore, if no de-
scendant of i. finished at t;,, then DISPATCHMEMORY has not modified the
status of ., hence by induction hypothesis the result holds. Let us assume now
that a descendant of i. has finished its execution at t;,, let us call j. the children
of i, on the path to that descendant.

RR n° 8966

Dynamic memory-aware task-tree scheduling 14

If j. € FN (meaning j. is the descendant that finished at ¢;,), then one can see
that B was subtracted from Bﬂl%(zc) (DISPATCHMEMORY, line 2), then f;, was
added (DISPATCHMEMORY, line 5), then Cj, ;, was added (DISPATCHMEMORY,
line 9). Similarly, f;, was added to BookedBySubtree[:] (DISPATCHMEMORY,
line 5), then B —C}, ;. was subtracted (DISPATCHMEMORY, line 9) which keeps
the value identical, showing the result. Finally, one can notice that at the end
of the while iteration (line 11), the value B is now what was removed from
BookedBySubtree[i] compared to the beginning of the iteration.

Otherwise, j, € ACTURUN In that case, BBS(i.) and BookedBySubtreeli,]
can only be modified by the “while” loop of Algorithm DISPATCHMEMORY.
More specifically, only BookedBySubtree[j.] and Booked[i.] will be modified.
At the beginning of the iteration of the while-loop such that the index i = i,
then B is exactly equal to what was subtracted from BookedBySubtreel[j.].
Furthermore, Cj;, is added to Booked[i.], and then B —Booked|[i.] is subtracted
from BookedBySubtreeli.] which shows the result. Finally, we notice again that
at the end of the iteration, B is exactly equal to what was subtracted from
BookedBySubtreeli.].

This proves the result for 4., hence proving the wanted result. O

Lemma 4. At any time t, ifi € ACT U RUN, then

Booked[i]| < MemNeeded; — Z fi
j€Children(i)N(ACTURUN)

Proof. We prove this result by induction on time. At tqg = 0, ACT U RUN
is empty, hence showing the result. Let us assume the result true for all node
i € ACTURUN at any time ¢ < t;, and let us that it also holds for ¢ €]t;,, i, +1]-

We first start by the case where i € UN U CAND at t;,, and i € ACT U
RUN in |ti,,tiy+1]- This means that node i was activated (moved to ACT)
by Algorithm UPDATECAND-ACT at time t;,. Let us consider the missing
memory as defined in UPDATECAND-ACT:

MissingMem,;

= max | 0, MemNeeded; — | Booked[i] + Z BookedBySubtree|[j]
j€ Children (i)

Since ¢ was in CAND right before being activated, we had Booked[i] =

Zje Children(i)NFN fi (Lemma 2).
Moreover, for all j € Children(i), BookedBySubtree[j] does not change later
when ¢ is moved to ACT, hence according to Lemma 3 (we use item (3) on &

RR n° 8966

Dynamic memory-aware task-tree scheduling 15

then item (2) on the set Children(i) N (ACT U RUN)),

>~ BookedBySubtree[j] = > BookedBySubtree|;]
j€ Children(i) J€E€Children(i)N(ACTURUNUFN)
> Z BookedBySubtree[j]
j€ Children(i)N(ACTURUN)
> Z MemNeeded
j€ Children(i)N(ACTURUN)
2 i
j€Children(i)N(ACTURUN)
Hence we verify that:
o If MissingMem,; = 0, then when ¢ is moved to ACT,
Booked[i] = Z fi < MemNeeded; — Z BookedBySubtree|[j]
j€ Children(i)NFN j€ Children(i)
< MemNeeded; — Z [

Jj€ Children(i)N(ACTURUN)
o If MissingMem,; # 0, then when ¢ is moved to ACT,

Booked[i] = MemNeeded; — Z BookedBySubtreelj]
j€ Children(i)

< MemNeeded; — Z fi-
jE Children(i)N(ACTURUN)

Let us now assume that ¢ was already in ACT U RUN at t;,. Let A;, be the
value of Booked[i] at t;,, and B;, = MemNeeded; —3_ ;¢ cpigren(iyn(acTurun) fi
at t;,. We have A,, < B;, by induction hypothesis.

e Ifj is not an ancestor of the node that just finished, then during |¢;,, ti,+1],
Booked[i] = A;, and MemNeeded; — ZjeChildren(i)ﬁ(ACTURUN) fj = Bi,
hence the property holds.

e If i is the parent of the node j. that just finished, then during |t;,,tio+1],
MemNeeded; — ZjeChildren(i)ﬂ(ACTURUN) fi = Bi, — fj.. Furthermore,
D1SPATCHMEMORY performs the operation Booked[i] <— A;, + f;. + Ci .,
where either C; ;, = 0 in which case we can verify that the property holds,
or C; ;. # 0, and in this case we have BookedBySubtree[i] = MemNeeded;,

RR n° 8966

Dynamic memory-aware task-tree scheduling 16

then by Lemma 3, we have:

MemNeeded; = BookedBySubtree]i]

= Booked[i] + Z BookedBySubtreelj]
j€ Children (i)n(ACTURUN)
> Booked[i] + Z fi

J€ Children(i)N(ACTURUN)

hence showing the result.

e If i is another ancestor of the node j. that just finished, then during
Jtigs tig1], MemNeeded; — 3¢ opigren(iyn(acTuruny fi = Big- Further-
more, DISPATCHMEMORY does: Booked[i] < A;, + C; ., where either
C;,j. = 0 in which case we can verify that the property holds, or C; ;, # 0,
and

with an indentical argument that above we obtain the result.
This concludes the proof. O

Lemma 5. If i € RUN, then Booked[i] = MemNeeded;, if i € FN, then
BookedBySubtree[i] = 0.

Proof. We show this result by showing a stronger result: if i € RUN, then
Booked[i] = MemNeeded; = BookedBySubtree[i]. Then, if ¢ € FN, we have
BookedBySubtree[i] = 0 (this is a consequence of algorithm DISPATCHMEMORY).

The proof is an induction on the tree structure, starting from leaves. If 7 is
a leaf, then by Lemma 3 and 4 we have:

Booked[i] < MemNeeded; < BookedBySubtreei] = Booked][i],

hence showing the result.

Let us now consider an interior node ¢ and assume that the result is true for
its descendants in the tree. When ¢ is moved to RUN, then all its children are
in FN, hence Lemma 3 (items (2) and (3)) and Lemma 4 can be written as:

MemNeeded; < BookedBySubtree]i]

BookedBySubtree[i] = Booked[i] + Z BookedBySubtreelj]
j€ Children(i)NFN

Booked[i] < MemNeeded;

By induction hypothesis, j € Children(i) N FN,BookedBySubtree[j] = 0, which
shows the desired result. 0

We are now ready to show the final result:

Proof of Theorem 1. Let us remind what needs to be proven to show this result:

RR n° 8966

Dynamic memory-aware task-tree scheduling 17

1. At all time,), Booked[i] < M;
2. If i € RUN, then Booked[i] = MemNeeded,;;

3. For all i ¢ FN, we cannot decrease the value of Booked[i]; finally, when
i is moved to FN, its output f; should be moved from Booked[i] to its
parent’s memory usage: Booked|[parent(i)].

4. All tasks are executed.

We prove the item by checking how the three algorithms modify M gooked-
First, we notice that we ensure that at all time, Mpoorea = »; Booked[i]).
DISPATCHMEMORY never increases MBookeq; in UPDATECAND-ACT, when
modified, Mpookeq stays below M; Mpyokeq is not directly modified in MEM-
BOOKING.

The second item is proven by Lemma 5. For the third item, we check that
we never modify Booked[i] for i € FN and that DISPATCHMEMORY correctly
transfers f; to the parent of j at its termination.

For the fourth and last item, we proved by contradiction: suppose that at
some time ¢, all tasks are not processed and no more events happen. If not task
termination happens, this means than no tasks are running (RUN = {}). Let us
call ¢;, the last event (we write ¢;,41 = +00).

e Consider the case where ACT # (. We know that all descendants of
nodes in ACT are in ACT U RUN U FN, hence in particular there exists
a node ¢ in ACT such that all its descendants are in FN (or it has no
descendants). Then, by Lemma 3, 4 and 5 we have during |t;,, tiy+1]:
Booked[i] = MemNeeded;, hence i should have been moved to RUN in the
execution of MEMBOOKING at time ¢;, which contradicts RUN = {).

e Consider the case where ACT =). According to Lemma 1, the ig nodes
that were inserted in ACT are the i first elements AO. Let k be the
ip + 1th node in AO. We have also seen in the proof of Lemma 1 that at
tiy, k is the next node to be considered in CAND for activation. Hence
the only reason why it was not moved to ACT by UPDATECAND-ACT
is because Mpooked + MissingMemj > M.

Because all tasks are either in FN or in UN U CAND, using Lemma 2 we
can compute Mpooked:

Mpookea = Z Booked[i] + Z Booked|i]

i€FN i€ UNUCAND
= E 0+ E E fj
1€FN i€ UNUCAND je Children(i)NFN

= >) fi

i,AOli]>AOl[k] j€ Children(i)NFN

RR n° 8966

Dynamic memory-aware task-tree scheduling 18

We now evaluate the missing memory:

MissingMem,,

= MemNeeded), — | Booked[k] + Z BookedBySubtree[j]
j€ Children(k)

= MemNeeded), — Booked|k] thanks to Lemma 5
= MemNeeded), — Z 1 thanks to Lemma 2.
j€ Children(k)NFN

In the end, we have

M Booked + MissingMem,, = MemNeeded, + Z Z f;
i,AO[i]>AO[k] j€ Children(i)NFN

which is exactly the memory used by the sequential schedule AO when
processing k£ and hence is smaller than M, contradicting the previous

hypothesis.
In the end, we were able to show that if RUN = (), then ACTUUNUCAND =),
hence showing that FN =T and the whole tree was processed. O

5.1 Complexity analysis

In this section we give a complexity analysis of the algorithm presented in the
previous section. We have chosen to separate the idea of the main algorithm
from the optimizations used to lower the execution cost so that the proof of
Theorem 1 is more understandable. In this section we now detail those opti-
mizations. A complete version of the Algorithm is available in Appendix B.

Theorem 2. Let T a tree with n nodes, and H be its height, AO an activa-
tion order, EO an execution order, M a memory bound and p processors, then
MEMBOOKING(T, p, AO, EO, M) runs in O (n(H + logn)).

Proof. First let us define some data structures that we use and update during
the execution but that we did not disclose in the presentation of the algorithm
to simplify its proof of correctness.

First we introduce some informative arrays:

o We keep an array of size n, ChNotAct, such that at all time:
Vi, ChNotAct[i] = |{j € Children(i)|j € UN U CAND}|.

This array keeps track of the number of children of each nodes that are
still in UN or CAND. At the beginning of the execution, this array is
initiated for all nodes with their number of children. Then it is updated
in constant time by UPDATECAND-ACT when a node i is moved from
CAND to ACT (line 7): ChNotAct[parent(i)] < ChNotAct[parent(i)] — 1.
Hence the time complexity of updating this table throughout execution is

O(n).

RR n° 8966

Dynamic memory-aware task-tree scheduling 19

e We keep an array of size n, ChNotFin, such that at all time:
Vi, ChNotFin[i] = |{j € Children(i)|j ¢ FN}|.

This array keeps track of the number of children of each nodes that are not
finished. At the beginning of the execution, this array is initiated for all
nodes with their number of children. Then it is updated in constant time
by MEMBOOKING when a node ¢ finishes (line 10): ChNotFin[parent(i)] <
ChNotFin[parent(i)] —1. Hence the time complexity of updating this table
throughout execution is O(n).

o We keep an array of size n, NotUnCand, such that at all time:
NotUnCand[i| < ¢ ¢ UN U CAND

At the beginning of execution, this array is initiated to false. It is then
updated in constant time by UPDATECAND-ACT when a node i is moved
from CAND to ACT (line 7): NotUnCand[i] < true. Hence the time
complexity of updating this table throughout execution is O(n).

Now we introduce the main structures used in the computation:

e We implement CAND as a heap whose elements are sorted according to
the activation order (AO). All elements are inserted and removed (with
complexity O(logn)) at most once from CAND, hence a time complexity
of O(nlogn). Furthermore, in UPDATECAND-ACT, extracting 4 from
CAND (on line 3) is done in constant time.

e In practice belonging to ACT can be verified by checking if MemNeeded; <
BookedBySubtree[i] (Lemma 3, item 2). Hence we do not need a data
structure for ACT.

e Nevertheless, we use a data structure to remember the elements of ACT
whose children have all finished their execution. Hence instead of imple-
menting ACT, we use:

ACTf = ACT n {i|ChNotFin[i] = 0}.

This is implemented as a heap whose elements are sorted according to
the activation order (EO). In order to keep this property at all time,
in UPDATECAND-ACT when a node i is moved from CAND to ACT
(line 7), we check if ChNotFin[i] = 0, in which case i is inserted in
ACTSf. Similarly, in MEMBOOKING when a node ¢ finishes (line 10),
if ChNotFin[parent(i)] is set to 0, then we insert parent(i) in ACTf in
O(logn). Note that all elements are inserted and removed at most once
from ACTYS, hence the time complexity of elements going through ACTf
is O(nlogn). Finally, in MEMBOOKING, extracting i from ACTSf (line 14)
is done in constant time.

If we detail all operations contained in MEMBOOKING:

RR n° 8966

Dynamic memory-aware task-tree scheduling 20

e DIsPATCHMEMORY is called exactly once per node (every time a node
finishes). For a given node j of depth h;, it does at most O(h;) operations
(note that the test i € ACT U RUN on line 7 can be done in constant
time by checking if NotUnCand[i] = true), which gives a total cumulative
time complexity of O(nH).

e UPDATECAND-ACT is called for each event. Note that we have already
accounted for removing or inserting all elements from the different sets.
Finding the element to remove from CAND on line 3 is done in constant
time because CAND is a heap sorted according to AO. Similarly, the
test on line 8 can be done in constant time by simply testing whether
ChNotAct[parent(i)] = 0.

The most time consuming event is the computation of MissingMem, on
line 4 which could be computed up to O(n) times for a given node if
the condition on Mpyokes and M on line 5 is not satisfied (hence giv-
ing a time complexity of O(n?)). To avoid this case, we will extend
the property (3) proven in Lemma 3 to a node ¢ of CAND such that
BookedBySubtree[i] has already been computed once. To do this, we first
initialized BookedBySubtree[j] to -1, and replace line 4 in UPDATECAND-
ACT by:

If BookedBySubtree[i] = —1, then

BookedBySubtreeli] < Booked[i] + Z BookedBySubtree][j]
j€ Children(i)

MissingMem,; < max(0, MemNeeded; — BookedBySubtree]i])

We also extend the “while” loop in DISPATCHMEMORY (line 7) from ¢ €
ACT U RUN to i € {i|BookedBySubtree[i] # —1}.

o Finally, the last “while” loop of MEMBOOKING (line 13) is entered once
per element contained in ACT, that is exactly n times. Furthermore,
because ACTYS is a heap sorted according to FO, removing one element
is done in O(logn), which gives a cumulative complexity of O(nlogn) for
this last loop.

Finally accounting for all operations, the total time complexity of this opti-
mized algorithm is O(n(log(n) + H)). O

6 A new makespan lower bound
It is usual in scheduling problems to compare the makespan of proposed al-
gorithms to lower bounds, as the optimal makespan is usually out of reach

(NP-complete). The classical lower bound for scheduling task graphs considers
the maximum between the average workload (total computation time divided

RR n° 8966

Dynamic memory-aware task-tree scheduling 21

by the number of processors) and the longest path in the graph. In a memory-
constrained environnement, the memory bound itself may prevent the simulta-
neous execution of too many tasks. We propose here a new lower bound that
takes this into account.

Theorem 3. Let Cpax be the makespan of any correct schedule of a tree whose
peak memory is at most the memory bound M, and t; the processing time of
task i. Then

1
Chax > i ZZ: MemNeeded; X t;.

Proof. Consider a task i as described in the model of Section 2: its processing
requires a memory of MemNeeded; (see Equation (1)). As stated in the the-
orem, we denote by ¢; its processing time. Consider the total memory usage
of a schedule, that is, the sum over all time instants ¢ of the memory used by
this schedule. Then, task ¢ contributes to at least MemNeeded; x t; to this
total memory usage. For a schedule of makespan Ci.x, the total memory us-
age cannot be larger than Cp.x X M, where M is the memory bound. Thus,
Ei MemNeeded; x t; < Cnax X M which concludes the proof. O

We have noticed in the simulations described in the next section that with
eight processors, this new lower bound improved the classical lower bound in
22% of the case for on actual assembly trees, and in these cases the average
increase in the bound was 46%. For the simulations on synthetic trees, it has
improved the lower bound in 33% of the cases, with an average improvement
of 37%. Contrarily to the previous lower bound, this new lower bound does
not depend on the number of processors, hence the improvement is even greater
with more processors.

It is important to understand that the more precise the lower bound, the
more information is available for a possible improvement of the considered
heuristics.

7 Simulations

We report here the results of the simulations that we performed to compare our
new booking strategy (MEMBOOKING) to the two other scheduling heuristics
presented above: the basic ACTIVATION policy [1] presented in Section 3.1 and
the booking strategy [7] for reduction trees, denoted MEMBOOKINGREDTREE,
from Section 3.2. In the latter, the tree is first transformed into a “reduction
tree” [7] by adding some fictitious nodes and edges before the scheduling strategy
can be applied.

7.1 Data sets

The trees used for the simulations come from two data sets, which we briefly
describe below.

RR n° 8966

Dynamic memory-aware task-tree scheduling 22

The first data set, also called assembly trees are trees corresponding to the
multifrontal direct factorization of a set of sparse matrices obtained from the
University of Florida Sparse Matrix Collection (http://www.cise.ufl.edu/
research/sparse/matrices/). This data sets is taken from [7], where more
information can be found on multifrontal factorization and on how the trees
are constructed. This data sets consists in 608 trees which contains from 2,000
to 1,000,000 nodes. Their height ranges from 12 to 70,000 and their maximum
degree ranges from 2 to 175,000.

The second data set is synthetic. The node degree is taken randomly in [1; 5],
with a higher probability for small values to avoid very large and short trees,
on which we already observed with the previous data set that our algorithm
outperforms other strategies. The following table gives the precise node degree
probabilities:

X Pr(6=X)

1 0.58

2 0.17
345 008

Edges weights follow a truncated exponential distribution of parameter 1. More
precisely, we first generate a random number from an exponential distribution
of parameter 1, which is multiplied it by 100 and then truncated to fit in the
interval [10;10.000]. The processing size of a node is 10% of its outgoing edge
weight and it processing time is proportional to its outgoing edge degree. We
generated 50 synthetic trees of 1.000, 10.000 and 100.000 nodes, which results
in trees of respective average height of 63, 95 and 131.

7.2 Simulation setup

All three strategies were implemented in C, with special care to avoid complexity
issues. These strategies have been applied to the two tree families described
above, with the following parameters:

e We tested 5 different number of processors (2,4,8,16,32). The results were
quite similar, expect for the extreme case (too large or too small paral-
lelism). We mainly report the results for 8 processors but also mention
results for other number of processors.

e For each tree, we first computed the postorder traversal that minimizes
the peak memory. This gives the minimum amount of memory needed for
both ACTIVATION and MEMBOOKING (MEMBOOKINGREDTREE is likely
to use more memory as it works on a transformed tree). The heuristics
are then tested with a factor of this minimal memory, which we call below
normalized memory bound. We only plot an average result when a given

strategy was able to schedule at least 95% of the trees within the memory
bound.

RR n° 8966

Dynamic memory-aware task-tree scheduling 23

e The previous postorder was used as input for both the activation order
AO and the execution order FO for ACTIVATION and MEMBOOKING in
general. We also tested other orders for activation and execution, such as
other postorders, critical path ordering, or even optimal (non-postorder)
ordering for peak memory [10]. As seen later, this only results in slightly
noticeable change in performance.

During the simulations of the parallel executions, we reported the makespan
(total completion time), which is normalized by the maximum of the classical
lower bound and our new memory related lower bound (see Section 6). We also
reported the peak memory of the resulting schedules, as well as the time needed
to compute the schedule. This scheduling time does not include the computation
of the activation or execution order, which may be done beforehand.

7.3 Results on the assembly trees

o
|

i
:
!

Normalized makespan
i =
| |

I I I I I
0 5 10 15 20
Normalized memory bound

Heuristics: ACTIVATION & MEMBOOKINGREDTREE MEMBOOKING

Figure 2: Makespan of assembly trees with all heuristics depending on the
memory bound

Figure 2 plots the average normalized makespan of all strategies on vari-
ous memory constraints, whileFigure 3 shows the speedup of MEMBOOKING
over ACTIVATION. We notice that for a memory bound twice the minimum
memory, MEMBOOKING is 1.4 faster than ACTIVATION on average. However,
even this particular speedup spans a wide interval (between 1 and 6) due to
the large heterogeneity of the assembly trees. Note that the two heuristics from
the literature give very similar results: this is explained by the fact that MEM-
BOOKINGREDTREE first transforms the trees before applying a smart booking
strategy: on these trees, adding fictitious edges has the same effect than booking
to much memory (as ACTIVATION does) and hinders the benefit of the book-
ing strategy. We also note that MEMBOOKING is able to take advantage of

RR n° 8966

Dynamic memory-aware task-tree scheduling 24

— o o
| | |

Speedup compared to ACTIVATION

10 15 20
Normalized memory bound

Figure 3: Speedup of MEMBOOKING compared to ACTIVATION on assembly
trees. Plain lines represent the average speedup, dotted lines connect the median
speedup while the ribbon depicts the results between the first and ninth decile
(the maximum speedup always lies between 5 and 6).

very scarce memory conditions: as soon as the available memory increases from
its minimum value, its makespan drops and reaches only 10% above the lower
bound for 3x the minimum memory, leaving very little room to hope for better
algorithms. This is also illustrated by Figure 4, which plots the real use of the
memory by the heuristics: while ACTIVATION and MEMBOOKINGREDTREE are
very conservative, MEMBOOKING is able to use larger fraction of the available
memory when it is limited.

Discussion on execution time: From the complexity analysis (Section 5.1)
we expect our algorithm to add significant overhead when trees are very deep
(nH term of the worst-case complexity). We first study the cumulative running
time in Figure 5 of the various strategy as a function of the number of nodes in
the trees. All strategies have similar running times, except on a subset of trees
for which our heuristic is much slower (= 10s). We verify that those running
times indeed depend on the height of the tree in Figure 6. Another noticeable
fact from this figure is that overall the average overhead for each node remains
negligible (below 1ms per node with height H = 10°!).

As future work, it may be interesting to get rid of this height factor in the
complexity of the algorithm especially for cases when H = O(n).

To give some hindsight on the importance of this factor, we decided to study
the speedup of MEMBOOKING compared to that of ACTIVATION as a function
of the tree height. In particular, one can see from the correlations between
Figures 5 and 6 that the trees of large height are trees where H = O(n). We
report these results in Figure 7 where we show the relation between achievable
speedup and tree height: very deep trees usually correspond to thin ones and

RR n° 8966

Dynamic memory-aware task-tree scheduling 25

1.00 =

15 3
S =
I I

Fraction of available memory used
|

I I I
5 10 15 20
Normalized memory bound

Figure 4: Fraction of memory used by all heuristics on assembly trees (same
legend as Figure 2)

1.00-

0.01-

Scheduling time (seconds, log. scale)

1 1 1
le+04 . le+05 le+06
Tree size (number of nodes, log. scale)

Figure 5: Running times of the heuristics on assembly trees (same legend as
Figure 2)

RR n°® 8966

Dynamic memory-aware task-tree scheduling 26

j 1e-04-

1le-05-

Average scheduling time per node (s., log. scal

1 1 1 1
1e+02 1e+03 le+04 1e+05
Tree height (log. scale)

Figure 6: Running times of the heuristics on assembly trees (same legend as
Figure 2)

Speedup compared to ACTIVATION
V) w
| |
° 3 oo

.
% e
.
o

.

.

“
.
.

I I I I
20000 40000 60000 80000
Tree height

Figure 7: Speedup of MEMBOOKING compared to ACTIVATION on assembly
trees when the normalized memory bound is 2 for all 608 trees.

RR n°® 8966

Dynamic memory-aware task-tree scheduling 27

do not provide big opportunities for increasing the parallelism. This is why
our strategy achieves best speedups on shallow trees. With this in mind, an
interesting study would be to derive a good measure on trees which may hint
whether the use of a sophisticated strategy such as MEMBOOKING is needed.
Finding such a good measure would need a particular research effort and is out
of scope of this paper.

7.3.1 Changing the activation or execution order

On Figure 8, we present the average makespan of the ACTIVATION heuristic for
various activation and execution order. This figure is similar to Figure 2 for the

gl“{ N * Activation/Execution Orders:
E} 1 ~ memPO/memPO

g | -# memPO/CP

- OptSeq/CP

g 1.2 —= OptSeq/OptSeq

é = perfPO/CP

5 perfPO/perfPO

Z.

I I I
5 10 15
Normalized memory bound

1.08 —

1.04 -

Normalized makespan

1.02 =

1.00 —

I I I
b 10 15 20
Normalized memory bound

Figure 8: Makespan of assembly trees for the proposed MEMBOOKING strategy
using different activation and execution order. The bottom plot corresponds to
a zoom on the part where the memory is less limited.

RR n° 8966

Dynamic memory-aware task-tree scheduling 28

other scheduling heuristics. The activation and execution order used are the
following:

e memPO (memory PostOrder): the sequential postorder traversal that
minimizes the peak memory (NB: this is the order chosen activation and
execution order of both ACTIVATION and MEMBOOKING in all other plots
of this section);

e CP (Critical Path): nodes orders by decreasing bottom-level;

e OptSeq (Optimal Sequential): the sequential (non postorder) traversal
that minimizes the peak memory, computed as in [10];

e perfPO (performance PostOrder): another postorder traversal, designed
for parallel performance (subtrees with larger critical path are scheduled
first, which, in a parallel execution, is supposed to give higher priority to
nodes with large critical path).

We notice that the results of using different orders for activation and/or execu-
tion slightly change the results: using CP as an execution order always gives a
small but noticeable improvement over the other strategies. On the contrary, the
choice of the activation order has little effect on the final makespan. The same
effects can be seen on ACTIVATION (when changing the activation/execution
orders) and MEMBOOKING (when changing its priority order). However, the
gap between the performance of different orders is much smaller than the gap
of using different scheduling strategy: changing the activation/execution order
does not change the ranking of the scheduling policies

7.3.2 Results on other numbers of processors

Figure 9 depicts the makespan of all strategies for increasing number of proces-
sors. We notice that the gain of the proposed MEMBOOKING strategy increases
with the number of available processors, as it also increased the potential par-
allelism in the tree.

7.4 Results on the synthetic trees

The simulations on synthetic trees show the same general trends as what we
notices on assembly trees, and thus we only review briefly their results.

Figure 10 and 11 shows that MEMBOOKING is once again able to schedule
trees faster in a memory-constrained environnement. Synthetic trees are more
regular and homogeneous that assembly trees, so that the speedup of MEM-
BOOKING over ACTIVATION is more regular. It reaches an average 1.3 when the
memory is twice the bound.

Finally, the scheduling time of all strategies is always below 0.1 seconds due
to the smaller height of the trees. Note that MEMBOOKINGREDTREE is not
able to schedule most trees in a very constrained memory environment: when
the memory bound is smaller that 1.4 times the minimum memory peak of a
sequential postorder processing, MEMBOOKINGREDTREE is unable to schedule
33% of the trees (or more) and thus is not included in the plot.

RR n° 8966

Dynamic memory-aware task-tree scheduling 29

Normalized makespan

20
Normalized memory bound

Heuristics: -~ ACTIVATION -4 MEMBOOKINGREDTREE -#- MEMBOOKING

Figure 9: Makespan of assembly trees for all strategies on various number of
processors.

RR n° 8966

Dynamic memory-aware task-tree scheduling

30

Processing time/lower bound
[}

&

|
2.5 5.0 7.5 10.0
Normalized memory boun

Heuristics: ACTIVATION -+ MEMBOOKINGREDTREE % MEMBOOKING

Figure 10: Makespan of synthetic trees with all heuristics depending on the

memory bound

— o 13 -
| | | |
-y
Seae,,

Speedup compared to ACTIVATION

I I I I
2.5 5.0 7.5 10.0
Normalized memory bound

Figure 11: Speedup of MEMBOOKING compared to ACTIVATION on synthetic
trees. Plain lines represent the average speedup, dotted lines connect the median

speedup while the ribbon depicts the minimum/maximum results.

RR n°® 8966

Dynamic memory-aware task-tree scheduling 31

1.00 - @ge—q

0.50 -

Fraction of available memory used

b
1

I I I
5 10 15 20
Normalized memory bound

Figure 12: Fraction of memory used by all heuristics on synthetic trees (same
legend as Figure 10)

scale)

50.100- l

0.010- ‘

Scheduling time (seconds, log

0.001-

1 1
. le+t04 1le+05
Tree size (number of nodes, log. scale)

Figure 13: Running times of the heuristics on synthetic trees (same legend as
Figure 10)

RR n°® 8966

Dynamic memory-aware task-tree scheduling 32

7.4.1 Changing the activation or execution order

On Figure 14, we present the average makespan of the ACTIVATION heuristic for
various activation and execution order. The activation/execution orders used
in these simulations are the same as the one described in Section 7.3.1.

Activation/Execution Orders:
~ memPO/memPO
-# memPO/CP
OptSeq/CP
~4- OptSeq/OptSeq
= perfPO/CP
perfPO/perfPO

Normalized makespan

4 M

o\ "
T

5 10 15
Normalized memory bound

1.04 -

1.03 —

AN

Normalized makespan

I I I
5 10 15 20
Normalized memory bound

Figure 14: Makespan of assembly trees for the proposed MEMBOOKING strategy
using different activation and execution order. The bottom plot corresponds to
a zoom on the part where the memory is less limited.

Once again, we notice that an improvement when using CP (Critical Path)
as an execution order, and that the improvement is small enough to keep the
ranking of the different scheduling policies.

RR n°® 8966

Dynamic memory-aware task-tree scheduling 33

7.4.2 Results on other numbers of processors

Figure 15 depicts the makespan of all strategies for increasing number of pro-
cessors for synthetic trees. Once again, we notice that the gain of the proposed
MEMBOOKING strategy increases with the number of available processors: it is
hardly noticeable for 2 or 4 processors, but becomes important for 8,16 and 32
Processors.

8 Conclusion

In this paper, we have proposed a novel algorithm for scheduling task trees on
computing platforms with bounded shared memory. The proposed algorithm
carefully allocates memory to activated nodes, and accurately predicts how much
memory can be recycled from the processing of a node’s ancestors. We have
shown that it is always able to schedule a tree under an admissible memory
bound, and that its complexity is sufficiently small to allow its implementation is
actual runtime schedulers. By performing simulations on both actual assembly
trees of sparse direct multifrontal solvers and on a broader class of synthetic
trees, we have proved that it outperforms its two competitors from the literature,
especially when memory is a scarce resource. Incidentally, we have proposed a
new makespan lower bound that takes into account a bound on the shared
memory, which, to the best of our knowledge, is the first of its kind.

This study is the first step in the design of realistic schedulers for task trees
handling large data, such as assembly trees. One major extension would be to
consider parallel tasks rather than only sequential ones. To this goal, one would
need to make several adaptations to cope with the extra memory needed for
a parallel processing, and to solve the unavoidable trade-off between allocating
many processors to big tasks (and losing on tree parallelism) and allocating
many tasks in parallel (and threatening the memory bound). Nevertheless, we
are confident that the algorithm presented in this paper (or its adaptation)
would still provide an improvement over the classical ACTIVATION algorithm.
Another necessary extension would be to consider distributed memories, of even
a mix of distributed/shared memory (as in clusters of cores sharing a dedicated
memory).

Acknowledgments

This work was supported by the ANR SOLHAR project funded by the French
National Research Agency.

References

[1] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, and Florent Lopez.
“Multifrontal QR Factorization for Multicore Architectures over Runtime

RR n° 8966

Dynamic memory-aware task-tree scheduling 34

2.5

Normalized makespan
V)
o

-
o

20
Normalized memory bound

Heuristics: - ACTIVATION -4 MEMBOOKINGREDTREE -#- MEMBOOKING

Figure 15: Makespan of all strategies for synthetic trees on various number of
processors.

RR n° 8966

Dynamic memory-aware task-tree scheduling 35

Systems.” In: Euro-Par 2013 Parallel Processing - 19th International Con-
ference. 2013, pp. 521-532.

[2] Emmanuel Agullo, Patrick R. Amestoy, Alfredo Buttari, Abdou Guer-
mouche, Jean-Yves L’Excellent, and Frangois-Henry Rouet. “Robust Memory-
Aware Mappings for Parallel Multifrontal Factorizations.” In: SIAM J.
Scientific Computing 38.3 (2016).

[3] P.R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. “A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling.” In:
SIAM Journal on Matriz Analysis and Applications 23.1 (2001), pp. 15—
41.

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. “Hy-
brid scheduling for the parallel solution of linear systems.” In: Parallel
Computing 32.2 (2006), pp. 136-156.

[5] Guillaume Aupy, Clément Brasseur, and Loris Marchal. Dynamic memory-
aware task-tree scheduling. Research Report 8966. France: INRIA, Oct.
2016.

[6] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Funda-
mentals of Algorithms. Philadelphia: Society for Industrial and Applied
Mathematics, 2006.

[7] Lionel Eyraud-Dubois, Loris Marchal, Oliver Sinnen, and Frédéric Vivien.
“Parallel Scheduling of Task Trees with Limited Memory.” In: TOPC 2.2
(2015), p. 13.

[8] Mathias Jacquelin, Loris Marchal, Yves Robert, and Bora Ucar. “On Op-
timal Tree Traversals for Sparse Matrix Factorization.” In: Proceedings
of the 25th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS’11). Los Alamitos, CA, USA: IEEE Computer Society,
2011, pp. 556-567.

[9] Chi-Chung Lam, Thomas Rauber, Gerald Baumgartner, Daniel Cociorva,
and P. Sadayappan. “Memory-optimal evaluation of expression trees in-
volving large objects.” In: Computer Languages, Systems & Structures
37.2 (2011), pp. 63-75.

[10] Joseph W. H. Liu. “An application of generalized tree pebbling to sparse
matrix factorization.” In: STAM J. Algebraic Discrete Methods 8.3 (1987),
pp. 375-395.

[11] Joseph W. H. Liu. “On the storage requirement in the out-of-core multi-
frontal method for sparse factorization.” In: ACM Transaction on Math-
ematical Software (1986).

[12] Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, Ewa Deelman, Ri-
zos Sakellariou, Karan Vahi, Kent Blackburn, David Meyers, and Michael
Samidi. “Scheduling Data-IntensiveWorkflows onto Storage-Constrained
Distributed Resources.” In: Proceedings of the IEEE Symposium on Clus-
ter Computing and the Grid (CCGrid’07). Los Alamitos, CA, USA: IEEE
Computer Society, 2007, pp. 401-409.

RR n° 8966

Dynamic memory-aware task-tree scheduling 36

[13] Ravi Sethi and J.D. Ullman. “The Generation of Optimal Code for Arith-
metic Expressions.” In: J. ACM 17.4 (1970), pp. 715-728.

[14] Wayne E. Smith. “Various optimizers for single-stage production.” In:
Naval Research Logistics Quarterly 3.1-2 (1956), pp. 59-66. 1SsN: 1931-
9193.

A Sequential post-order minimizing average mem-
ory

We define the average memory of a schedule as follows:

Cmax
AvgMem =

mem(t)dt,
Cmax t=0 ()
where mem(t) is the memory used by the schedule at time ¢ and Cyax is the
makespan.

Theorem 4. A post-order traversal that minimizes the average memory is ob-
tained by processing subtrees by non-increasing T;/ f; value, where T; is the total
time needed to process the subtree rooted in 1.

Proof. Let us consider a tree rooted at node r, with k children cy,...,cg. If the
subtrees are processed in this order, the average memory of the processing of
the whole subtree is:

k i—1 k
1
AvgMem(r) = T Z Z fi | +AvgMem(c;) | - T, + Z fi | tr
i=1 j=1 Jj=1
processing of ¢; processing of r
Let us now rewrite this expression:
k k k i k

T,.-AvgMem(r) = Z fi tH—Z Angem(ci)Tci—FZ Z fi TCi_Z fiTe,

j=1 i=1 i=1 \j=1 i=1

The only term that depends on the subtree ordering is the third and penultimate
one, namely Zle (Z;Zl fj) xT,. As this term does not depend on the average
memory of the subtrees, it is easy to see that an optimal post-order for a tree
can be obtained by optimizing the average memory of its subtrees (to minimize
the second term) and carefully ordering them (to minimize the third term).
We then rewrite the third term using 7., = w; and f; = p; and obtain
Zle w; (Z;’:l pj> which we identify as the weighted sum flow of independant
tasks on a single processor (problem 1|| 3" w;C; using Graham’s notation). Fol-
lowing the classical Smith’s rule [14], we know that an ordering with minimal

RR n° 8966

Dynamic memory-aware task-tree scheduling

37

sum flow is obtained by processing the tasks by non-increasing w; /p;. Thus, an
optimal ordering of the subtrees for the average memory is obtained by process-
ing them by non-increasing T,/ f;.

O

B Complete and optimized algorithm

Algorithm 5: INniT(T', AO,

FO)

// Initialization of the data structures

CAND —

ACTYf

4

1 ChNotAct[l..n] —
ChNotFin[l..n] —
NotUnCand[l..n] —
Booked|[1..n] —
BookedBySubtree[l..n] +

2 MBooked ~0

AO-sorted heap (init:

EO-sorted heap (init:

array of size n
array of size n

array of size n
array of size n

(

(
array of size n (init:

(

(

Leaves(T); fun: AO-insert,
AO-remove, AO-min)
empty; fun: FO-insert,
EO-remove, EO-min)

: Vi,ChNotAct[i] + | Children(i)|)
: Vi,ChNotFin[i] < |Children(i)|)

Vi,NotUnCand[i] = false)

: Vi,Booked[i] = 0)
: Vi,BookedBySubtree[i] = —1)

RR n° 8966

Dynamic memory-aware task-tree scheduling 38

Algorithm 6: MEMBOOKING(T, p, AO, EO, M)

1 IniT(T, AO, EO)

2
3
4
5

10

11

12

13
14

15

16
17

18
19
20
21
22

23
24

25

26
27
28

29
30

31
32
33

while the whole tree is not processed do

Wait for an event (task finishes or ¢t = 0)
foreach just finished node j do

B = Booked][j]
Booked|j] +~0
MBooked — MBaoked - B

BookedBySubtree[j] < 0
i < parent(j)
if i # NULL then
ChNotFin[i] - ChNotFin[i] — 1
if ChNotFin[i] = 0 and BookedBySubtree[i] > MemNeeded; then
EO-insert (i, ACTYf)
Booked[i] < Booked[i] + f;
MBookcd — MBookcd + f]
| B=B-;
while ¢ # NULL and BookedBySubtree[i] # —1 and B # 0 do
Cj,s = min(B, max(0, MemNeeded; — (BookedBySubtree[i]| — B)))

Booked][] < Booked[i] + C};

M Booked < MBookea + Cji

BookedBySubtree[i] <« BookedBySubtree[i] — (B — Cj;)
B=B-C;;

i < parent (i)

WaitForMoreMem <« false
while |(WaitForMoreMem) and CAND # () do
i <~ AO-min(CAND)
if BookedBySubtree[i] = —1 then

L BookedBySubtree[i] + Booked[i]+

MissingMem,; = max (0, MemNeeded; — BookedBySubtree[i])

if Mpookeda + MissingMem,; < M then

Booked|i] + Booked[i] + MissingMem,

MBooked < MBookea + MissingMem,

BookedBySubtree[i] <« Booked[i] + 3 ; cigren(i) BookedBySubtree;]

€ Children (i) BookedBySubtree|[j]

AO-remove(i, CAND); if ChNotFin[i] = 0 then EO-insert(i, ACTf)
ChNotAct[parent(i)] < ChNotAct[parent(i)] — 1
| if ChNotAct[parent(i)] = 0 then AO-insert(parent(i), CAND)

else
L WaitForMoreMem <— true

while there is an available processor P, and ACTf # 0 do
i < FEO-min(ACTYf); EO-remove(i, ACTY)
L Make P, process %

RR n° 8966

V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

