A. Abboud, F. Grandoni, and V. V. Williams, Subcubic Equivalences Between Graph Centrality Problems, APSP and Diameter, 26th ACM/SIAM Symposium on Discrete Algorithms, pp.1681-1697, 2015.
DOI : 10.1137/1.9781611973730.112

A. Abboud and V. V. Williams, Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 2014.
DOI : 10.1109/FOCS.2014.53

D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, Approximating betweenness centrality, The 5th Workshop on Algorithms and Models for the Web-Graph, 2007.

J. Bang-jensen and G. Gutin, Digraphs Theory, Algorithms and Applications, 2008.

I. Baran, E. D. Demaine, and M. Patrascu, Subquadratic Algorithms for 3SUM, Algorithmica, vol.42, issue.2, pp.584-596, 2008.
DOI : 10.1007/s00453-007-9036-3

A. Bavelas, Communication Patterns in Task???Oriented Groups, The Journal of the Acoustical Society of America, vol.22, issue.6, pp.725-730, 1950.
DOI : 10.1121/1.1906679

M. Borassi, P. Crescenzi, and M. Habib, Into the Square: On the Complexity of Some Quadratic-time Solvable Problems, Electronic Notes in Theoretical Computer Science, vol.322, 2014.
DOI : 10.1016/j.entcs.2016.03.005

URL : https://hal.archives-ouvertes.fr/hal-01390131

U. Brandes, A faster algorithm for betweenness centrality*, The Journal of Mathematical Sociology, vol.113, issue.2, pp.163-177, 2001.
DOI : 10.1016/S0378-8733(97)00007-5

K. Bringmann, Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp.661-670
DOI : 10.1109/FOCS.2014.76

V. Chepoi and F. F. Dragan, A linear-time algorithm for finding a central vertex of a chordal graph, pp.159-170, 1994.
DOI : 10.1007/BFb0049406

V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès, Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.59-68, 2008.
DOI : 10.1145/1377676.1377687

E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, Computing classic closeness centrality, at scale, Proceedings of the second edition of the ACM conference on Online social networks, COSN '14, pp.14-37, 2014.
DOI : 10.1145/2660460.2660465

N. Cohen, D. Coudert, and A. Lancin, Exact and approximate algorithms for computing the hyperbolicity of large-scale graphs, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735481

N. Cohen, D. Coudert, and A. Lancin, On Computing the Gromov Hyperbolicity, Journal of Experimental Algorithmics, vol.20, 2015.
DOI : 10.1145/2780652

URL : https://hal.archives-ouvertes.fr/hal-01182890

P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, and A. Marino, On computing the diameter of real-world undirected graphs, Theoretical Computer Science, vol.514, pp.84-95, 2013.
DOI : 10.1016/j.tcs.2012.09.018

URL : https://hal.archives-ouvertes.fr/hal-00936304

N. Edmonds, T. Hoefler, and A. Lumsdaine, A space-efficient parallel algorithm for computing betweenness centrality in distributed memory, 2010 International Conference on High Performance Computing, pp.1-10, 2010.
DOI : 10.1109/HIPC.2010.5713180

A. Elmasry, The Subset Partial Order: Computing and Combinatorics, ANALCO, pp.27-33, 2010.
DOI : 10.1137/1.9781611973006.4

M. J. Fischer and A. R. Meyer, Boolean matrix multiplication and transitive closure, Switching and Automata Theory, pp.2-4, 1971.

H. Fournier, A. Ismail, and A. Vigneron, Computing the Gromov hyperbolicity of a discrete metric space, arXiv preprint arXiv:1210, pp.1-6, 2012.

L. C. Freeman, A Set of Measures of Centrality Based on Betweenness, Sociometry, vol.40, issue.1, 1977.
DOI : 10.2307/3033543

A. Goralcíkova and V. Koubek, A reduct-and-closure algorithm for graphs, Mathematical Foundations of Computer Science, pp.301-307, 1979.

M. Gromov, Hyperbolic Groups, 1987.
DOI : 10.1007/978-1-4613-9586-7_3

M. Habib, R. Mcconnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, Theoretical Computer Science, vol.234, issue.1-2, pp.59-84, 2000.
DOI : 10.1016/S0304-3975(97)00241-7

R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280), pp.512-530, 2001.
DOI : 10.1109/SFCS.1998.743516

A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM Journal on Computing, 1978.

R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, pp.85-103, 1972.

J. King, A survey of 3SUM-hard problems, 2004.

V. Latora and M. Marchiori, A measure of centrality based on network efficiency, New Journal of Physics, vol.9, issue.6, 2007.
DOI : 10.1088/1367-2630/9/6/188

R. M. Mcconnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Mathematics, vol.201, issue.1-3, pp.189-241, 1999.
DOI : 10.1016/S0012-365X(98)00319-7

M. E. Newman, Networks: An Introduction, OUP Oxford, 2010.
DOI : 10.1093/acprof:oso/9780199206650.001.0001

P. Pritchard, On Computing the Subset Graph of a Collection of Sets, Journal of Algorithms, vol.33, issue.2, pp.1-14, 1999.
DOI : 10.1006/jagm.1999.1032

P. Atra¸scuatra¸scu, M. , and R. Williams, On the possibility of faster SAT algorithms, ACM-SIAM Symposium on Discrete Algorithms, 2010.

L. Roditty and V. V. Williams, Fast approximation algorithms for the diameter and radius of sparse graphs, Proceedings of the 45th annual ACM symposium on Symposium on theory of computing, STOC '13, p.515, 2013.
DOI : 10.1145/2488608.2488673

L. Roditty and V. V. Williams, Approximating the diameter of a graph, 2014.

R. Williams, A new algorithm for optimal 2-constraint satisfaction and its implications, Theoretical Computer Science, vol.348, issue.2-3, pp.357-365, 2005.
DOI : 10.1016/j.tcs.2005.09.023

R. Williams and H. Yu, Finding orthogonal vectors in discrete structures, SODA, 2014.
DOI : 10.1137/1.9781611973402.135

V. V. Williams and R. Williams, Subcubic Equivalences between Path, Matrix and Triangle Problems, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp.645-654, 2010.
DOI : 10.1109/FOCS.2010.67

Y. Wu and C. Zhang, Hyperbolicity and chordality of a graph, pp.1-22, 2011.

D. M. Yellin and C. S. Jutla, Finding extremal sets in less than quadratic time, Information Processing Letters, vol.48, issue.1, pp.29-34, 1993.
DOI : 10.1016/0020-0190(93)90264-A