Blood vessel modeling for interactive simulation of interventional neuroradiology procedures

Erwan Kerrien 1 Ahmed Yureidini 2, 1 Jeremie Dequidt 3 Christian Duriez 3 René Anxionnat 1, 4 Stéphane Cotin 5
1 MAGRIT - Visual Augmentation of Complex Environments
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
3 DEFROST - Deformable Robots Simulation Team
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : Endovascular interventions can benefit from interactive simulation in their training phase but also during pre-operative and intra-operative phases if simulation scenarios are based on patient data. A key feature in this context is the ability to extract, from patient images, models of blood vessels that impede neither the realism nor the performance of simulation. This paper addresses both the segmentation and reconstruction of the vasculature from 3D Rotational Angiography data, and adapted to simulation: An original tracking algorithm is proposed to segment the vessel tree while filtering points extracted at the vessel surface in the vicinity of each point on the centerline; then an automatic procedure is described to reconstruct each local unstructured point set as a skeleton-based implicit surface (blobby model). The output of successively applying both algorithms is a new model of vasculature as a tree of local implicit models. The segmentation algorithm is compared with Multiple Hypothesis Testing (MHT) algorithm (Friman et al, 2010) on patient data, showing its greater ability to track blood vessels. The reconstruction algorithm is evaluated on both synthetic and patient data and demonstrates its ability to fit points with a subvoxel precision. Various tests are also reported where our model is used to simulate catheter navigation in interventional neuroradiology. An excellent realism, and much lower computational costs are reported when compared to triangular mesh surface models.
Type de document :
Article dans une revue
Medical Image Analysis, Elsevier, 2017, 35, pp.685 - 698. 〈10.1016/j.media.2016.10.003〉
Liste complète des métadonnées

Littérature citée [61 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01390923
Contributeur : Erwan Kerrien <>
Soumis le : mercredi 2 novembre 2016 - 15:54:18
Dernière modification le : samedi 18 novembre 2017 - 01:03:06
Document(s) archivé(s) le : vendredi 3 février 2017 - 13:47:05

Fichier

medima_20161008.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Erwan Kerrien, Ahmed Yureidini, Jeremie Dequidt, Christian Duriez, René Anxionnat, et al.. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures. Medical Image Analysis, Elsevier, 2017, 35, pp.685 - 698. 〈10.1016/j.media.2016.10.003〉. 〈hal-01390923〉

Partager

Métriques

Consultations de la notice

472

Téléchargements de fichiers

285