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Abstract. In this article we conduct an evaluation of feature extraction methods 

for the problem of human motion detection based on 3-dimensional inertial sen-

sor data. For the purpose of this study, different preprocessing methods are 

used, and statistical as well as physical features are extracted from the motion 

signals. At each step, state-of-the-art methods are applied, and the produced re-

sults are finally compared in order to evaluate the importance of the applied fea-

ture extraction and preprocessing combinations, for the human activity recogni-

tion task. 
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1 Introduction 

One of the most important tasks in pervasive computing is to provide accurate and 

opportune information on people’s activities and behaviors. Applications in medicine, 

security and entertainment constitute examples of this effort. For instance, patients 

with obesity, diabetes or heart disease, are often required to fulfill a program of phys-

ical exercise that is integrated within their daily activities [1]. In computer vision, 

complex sensors such as cameras have been used to recognize human activities but 

their accuracy falls under a real-home setting, due to the high-level activities that take 

place in the natural environments, as well as the variable lighting or clutter [8]. As a 

result, body-attached accelerometers are commonly used as an alternative in order to 

assess variable daily living activities. 

The human motion detection problem using accelerometers is an emerging area of 

research. Sensors embedded in objects or attached on the body are generally chosen to 

study movement patterns or human behavior. Accelerometers have been used exten-

sively due to their low-power requirements, small size, non-intrusiveness and ability 

to provide data regarding human motion. In a common scenario, these data can be 

processed using signal processing and pattern recognition methods, in order to obtain 

a real-time recognition of human motion. 



Several human activity recognition systems have been proposed in the past, which 

include the use of accelerometers. Some of them analyze and classify different kinds 

of activity using acceleration signals [2], [3], while others apply them for recognizing 

a wide set of daily physical activities [4], or describe a human activity recognition 

framework based on feature selection techniques [5]. Bernecker et al [6], proposed a 

reclassification step that increases accuracy of motion recognition. Karantonis et al. 

[7] introduced an on-board processing technique for a real-time classification system, 

yielding results that demonstrate the feasibility of implementing an accelerometer-

based, real-time movement classifier using embedded intelligence.  

Khan et al. [8] propose a system that uses a hierarchical recognition scheme, i.e., 

the state recognition at the lower level using statistical features and the activity recog-

nition at the upper level using the augmented feature vector followed by linear dis-

criminant analysis. Several powerful machine learning algorithms have been proposed 

in the literature for the detection of human motion. The most widely used are the arti-

ficial neural networks [6, 8, 10], the naïve-Bayes [4, 14] and the support vector ma-

chines [5, 14]. 

In this paper, a comparative evaluation of feature extraction methods for human 

motion detection is presented. The main contribution of the paper is the proposal of 

the best combination between preprocessing and feature extraction, for the human 

activity recognition task. For this purpose, we choose to evaluate different prepro-

cessing and feature extraction combinations, formed after thoroughly examining the 

existing state-of-the-art methods. Although this study may seem quite simple, there is 

little known in bibliography regarding official comparison between methods that in-

clude preprocessing combined with feature extraction. Since most studies concentrate 

on preprocessing or feature extraction separately, focusing on the above combinations 

seems important not only for the acquisition of better results, but also for discovering 

meaningful data interpretations and features that “characterize” human motion. 

The rest of this paper is organized as follows: In Section 2 we present the frame-

work constructed for human motion detection. Section 3 offers details about the ex-

perimental setup and in Section 4 we present the achieved experimental results. Final-

ly in Section 5 we conclude this work. 

2 Framework for Comparative Evaluation 

In the present framework for comparative evaluation, we assume that the input to the 

framework consists of 3-dimensional  , ,x y z  signal streams, as illustrated in Fig. 1. 

Each stream represents one movement direction in the sense of moving for-

ward/backward, up/down and left/right. Preprocessing i  consists of applying a sliding 

window W  to the incoming streams, of constant length, resulting to 
i

W  frames, 

where 1 i I  . The time-shift between two successive frames is also constant and 

can result to frame sequences with or without overlap. After applying the sliding win-



dow, each signal frame 
i

W  is either led directly to the feature extraction stage(Non-

preprocessing method) or is previously processed using two different techniques. 
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Fig. 1. Block diagram of the preprocessing stage of the motion detection framework 

Specifically, the framework uses filtering methods
n

F , with 1 n N  , that produce 

n  signal frame representations per 
i

W  frame and b) a geometrical representation 

method G . Each one of the previously mentioned methods yields different 3-

dimensional data representations per frame 
i

W , namely  , ,x y z for non-

preprocessed data,  , ,
n n nF F F

x y z for n chosen filters, 1 n N  , and  , ,G G Gx y z  

for the geometrical representation. Each representation produced by the preprocessing 

stage is led to the feature extraction stage.  

In this way, we have feature extraction carried out in parallel for the non-

preprocessing representation, NPF , for n filter methods representation, 
n

FMF , and 

for the geometrical representation, GF , per signal frame 
i

W . The block diagram of the 

feature extraction and classification stage of the motion detection framework is de-

picted in Fig. 2. In the feature extraction stage, every input is processed by statistical 

and physical feature extraction algorithms. The statistical algorithms can briefly be 

divided to time, frequency and time-frequency domain methods.  

The utilization of these methods ensures that we get as much possible information 

from the data retrieved. In detail, each incoming representation of a signal frame is 

processed in parallel by each one of the feature extraction modules shown in Fig. 2. 

The estimated feature vectors could be mathematically represented as follows: the 



time-domain features

iFTiFT  , the frequency-domain features 

iFFiF F  , the 

time-frequency domain features 

iFTFiFTF   and the physical features 

iFPiF P  .  

After the decomposition of the different incoming frame representations to the de-

scribed feature vectors, an individual classifier is build per feature vector. Specifical-

ly, in the classification stage, for time-domain features we have TC  classifier, for 

frequency domain features FC classifier, for time-frequency TFC  and finally for 

physical features PC  classifier. 
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Fig. 2. Block diagram of the feature extraction and classification stage of the motion detection 

framework 

During the training phase a set of motion data (training data) with known labels, 

i.e. with a-priori annotated motion labels, is used to estimate models, 
k

fM , with 

1 k K   and { , , , }f T F TF P , for each human motion k  of interest and for each 

feature vector f . At the test phase the unknown motion data (test data) will be pre-

processed and decomposed to feature vectors as in the training phase. The classifica-

tion algorithms 
fC  will compare each vector 

j

fF , with { , , , }f T F TF P and 

1 j J  against each motion model 
k

fM  in order to decide the corresponding mo-

tion class, i.e.   arg max ,j k

j f f
k

f
d C F M , where 

j
d  is the motion class 



label assigned to the j -th test frame of the sensor data. After classification a post-

processing algorithm could be applied on the automatically labeled frames of the test 

recording in order to fine-tune the detected human motion classes, but this is left for 

further studying. 

3 Experimental Setup 

3.1 Sensor data description 

The USC-HAD database [9], which is a freely available dataset provided by the Uni-

versity of Southern California was chosen in order to conduct experiments using the 

framework for comparative evaluation described in the previous section. The dataset 

corresponds to well-defined low-level daily activities appropriate for evaluation of 

algorithms for human motion in healthcare scenarios. The database consist of sensor 

measurements from 14 subjects, 7 male and 7 female, taken from a sensor placed at 

their front right hip, using sampling frequency equal to 100 Hz.  

The activities performed were: walking forward/left/right/upstairs/downstairs, 

jumping, sitting, sitting, standing, sleeping, and elevator up/down. MotionNode, the 

sensing platform used, integrates a 3-axis accelerometer, a 3-axis gyroscope, and a 3-

axis magnetometer. For the purpose of this paper, only the 3-axis accelerometer data 

were used. Subjects performed 14 different types of activities, including walking, 

running, sitting, standing, ascending and descending stairs. Ground truth was annotat-

ed by an observer while the experiments were being carried out. 

3.2 Preprocessing and Feature Extraction 

During preprocessing, each of the 3-dimensional  , ,x y z  signal streams was frame 

blocked with a sliding window of 1 second length, with time-shift 0.5 seconds [7]. 

Except the frame blocking three preprocessing methods were used [7], namely: (i) the 

gravitational acceleration (GA) component of the signal, (ii) the body acceleration 

(BA) component of the signal and (iii) the Tilt sensing, defined as the angular position 

with respect to gravity per axis. Together with the baseline preprocessing (non-

preprocessing method), four preprocessing setups were created.  

For each of the four preprocessed outputs per frame, statistical and physical fea-

tures were extracted [5]. As far as feature analysis is concerned, statistical features are 

briefly divided into time-domain, frequency domain and time-frequency domain [11]. 

Time-domain features include mean, median, variance, root mean square (RMS), 

standard deviation, skewness, kurtosis and interquartile range (25%, 50%, 75%). Fre-

quency-domain features, which mainly represent the periodic structure of the signal, 

are the Fourier transform, the spectral entropy, the spectral energy and the 3rd order 

autoregressive-filter (AR) coefficients.  

Time-frequency domain features are used to investigate both time and frequency 

characteristics of complex signals and in general employ wavelet techniques, such as 

wavelet coefficients or energy of wavelet coefficients. The physical features [5] in-



clude the movement intensity (MI), the eigenvalues of dominant directions (EVA), 

correlation of acceleration along gravity and heading directions (CAGH) and the av-

eraged velocity along each direction and the averaged acceleration energy (AAE). 

3.3 Classification 

For each of the four preprocessing methods the estimated feature vector has dimen-

sionality equal to 77. Thus, the final feature vector per frame is of dimensionality 

4×77=308. For the classification of the estimated feature vectors, we relied on the 

support vector machines (SVMs) implemented with the sequential minimal optimiza-

tion method [13] using the polynomial kernel function (poly). The choice of the ker-

nel-based algorithm is owed to the fact that SVMs do not suffer from the curse of 

dimensionality phenomenon [12]. The classifier was implemented using the WEKA 

machine learning toolkit software [13].  

4 Experimental Results 

The human motion detection framework presented in Section 2 was evaluated using 

the experimental setup described in Section 3. To avoid overlap between the training 

and test datasets we followed a 10-fold cross validation protocol. The experimental 

results, in percentages, for the four feature extraction methods and for each of the 14 

subjects of the dataset are presented in Table 1. The best accuracy achieved for each 

subject is indicated in bold. The classification was carried out using individual classi-

fiers, under a subject-dependent scenario. 

Table 1. Motion detection accuracy (%) per subject and feature extraction method 

Sub. NP BA GA Tilt 

01 91,80 57,66 91,88 89,72 

02 90,55 62,93 90,29 89,01 

03 90,74 61,92 90,63 89,80 

04 85,93 55,33 85,42 83,94 

05 86,23 59,00 86,74 85,10 

06 91,99 92,51 56,28 90,42 

07 92,46 60,56 92,72 90,55 

08 91,79 65,61 91,35 90,10 

09 92,07 69,24 91,24 91,08 

10 91,72 64,56 91,42 88,27 

11 93,91 58,54 93,89 91,37 

12 93,34 63,44 93,51 92,81 

13 92,57 57,61 92,33 90,81 

14 87,45 53,98 86,67 83,48 



From Table 1 we can see that the best accuracy achieved is approximately 94%, in 

the non-preprocessed data representation and for Subject 11.  The BA method is the 

one that performs the worst among feature extraction methods. Both the non prepro-

cessed method and the tilt representation achieve very good results, with GA feature 

extraction method following shortly after the first two methods. 

The experimental results may show that the non preprocessed method performs 

the best, so not using preprocessing can yield good accuracy in motion detection, but 

the interesting finding is that the Tilt method also performs as well. This is very im-

portant, due to the fact that by using Tilt sensing, we achieve to add a geometrical 

aspect to the previously linear acceleration signals. As a result, when it comes to mo-

tions that are characterized by changes in angular velocity or torque, i.e. turning or 

clockwise movements that may be followed by movements that are linearly translat-

ed, the Tilt sensing method is preferable.  

Another observation is that the GA method also performs well, apart from the case 

of Subject 6. This outcome may be due to the fact that the database used for the ex-

periments includes many motions that have a strong relation to gravity acceleration. 

To be more specific, five out of fourteen activities (walking upstairs/downstairs, ele-

vator up/down and jumping) could be translated to changes only in the gravity dimen-

sion, not to mention the three static activities (lying, standing and sitting) which are 

also “characterized” by gravity acceleration.  

As a result, to face the problem of variability in human motion, it seems more ap-

propriate to deal with data preprocessing that involves mathematical or geometrical 

representation, rather than focus on the idea of applying filter-based signal processing. 

In addition, we investigated the importance of features used in the overall experi-

mental process, in terms of feature influence in the classification process. The feature 

ranking was performed using the ReliefF algorithm [15], and the top-3 features 

ranked by ReliefF are presented in Table 2. 

Table 2. Top-5 features ranked by the ReliefF algorithm 

Ranking Features  

1 Spectral entropy 

2 CAGH of x axis (gravity) 

3 Correlation xz 

4 Median 

5 Mean 

 

As can be seen in Table 2, within the most discriminative motion features for the 

task of automatic motion recognition are spectral entropy, the correlation between 

acceleration along gravity direction (CAGH), the correlation between gravity and 

heading direction, mean and median. At this point, it is evident that frequency domain 

features play an important role, as we meet spectral entropy and correlation at the top 

five ranked features. A physical feature (CAGH) is second in ranking, hence the im-

portance of the addition of physical features in the feature extraction process. At-

tempting to interpret these ranking results, we could initially observe that spectral 



entropy is justifiably ranked first, since it helps differentiate between signals that have 

similar energy values but correspond to different activity patterns [16]. The USC-

HAD database includes movements with similar energy, i.e. sitting compared to 

standing and lying, or walking in different patterns (forward, left, right, upstairs and 

downstairs).  

Following in rank is the CAGH feature that improves differentiation between ac-

tivities that involve translation (in terms of acceleration intensity) in a single dimen-

sion, compared to the total acceleration intensity of the other two dimensions. Move-

ments such as walking upstairs/ downstairs and walking left/right/forward fall in the 

previous category, hence the importance of using the CAGH feature. Correlation xz 

(between gravity and heading direction) also seems to play an important role in the 

classification results. Its interpretation is similar to CAGH, only in this case the com-

parison is inner-axial. Motions that have a strong xz correlation in the database are 

jumping, elevator up/down as well as static movements (lying, sitting, and standing).  

Finally, statistical features like mean and median, despite their simplicity, could 

not be missing from the top-5 ranking, since they are known for the robustness and 

stability they provide to the classification process. 

5 Conclusion 

In the present work we present a comparative evaluation of feature extraction meth-

ods, based on 3-dimensional data acquired from inertial sensors worn by humans. The 

framework uses four different preprocessing methods and the motion signals are pa-

rameterized by statistical and physical features. The experimental results indicated an 

average performance of 90.89% for the best combination of preprocessing and feature 

extraction methods, for 14 everyday human motion activities. The highest perfor-

mance achieved was approximately 94%. We deem the application of experiments 

constructed under a subject-independent scenario, in order to see if the present study 

responds well in intra-class errors, namely the errors introduces in the classification 

process when different people execute the same movement. 
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