Aggregated Conformal Prediction

Abstract : We present the aggregated conformal predictor (ACP), an extension to the traditional inductive conformal prediction (ICP) where several inductive conformal predictors are applied on the same training set and their individual predictions are aggregated to form a single prediction on an example. The results from applying ACP on two pharmaceutical data sets (CDK5 and GNRHR) indicate that the ACP has advantages over traditional ICP. ACP reduces the variance of the prediction region estimates and improves efficiency. Still, it is more conservative in terms of validity than ICP, indicating that there is room for further improvement of efficiency without compromising validity.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos; Spyros Sioutas; Christos Makris. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-437, pp.231-240, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44722-2_25〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391050
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 novembre 2016 - 17:17:41
Dernière modification le : vendredi 1 décembre 2017 - 01:16:37
Document(s) archivé(s) le : vendredi 3 février 2017 - 15:12:57

Fichier

978-3-662-44722-2_25_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Lars Carlsson, Martin Eklund, Ulf Norinder. Aggregated Conformal Prediction. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos; Spyros Sioutas; Christos Makris. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-437, pp.231-240, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44722-2_25〉. 〈hal-01391050〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

22