Efficiency Comparison of Unstable Transductive and Inductive Conformal Classifiers

Abstract : In the conformal prediction literature, it appears axiomatic that transductive conformal classifiers possess a higher predictive efficiency than inductive conformal classifiers, however, this depends on whether or not the nonconformity function tends to overfit misclassified test examples. With the conformal prediction framework’s increasing popularity, it thus becomes necessary to clarify the settings in which this claim holds true. In this paper, the efficiency of transductive conformal classifiers based on decision tree, random forest and support vector machine classification models is compared to the efficiency of corresponding inductive conformal classifiers. The results show that the efficiency of conformal classifiers based on standard decision trees or random forests is substantially improved when used in the inductive mode, while conformal classifiers based on support vector machines are more efficient in the transductive mode. In addition, an analysis is presented that discusses the effects of calibration set size on inductive conformal classifier efficiency.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos; Spyros Sioutas; Christos Makris. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-437, pp.261-270, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44722-2_28〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391053
Contributeur : Hal Ifip <>
Soumis le : mercredi 2 novembre 2016 - 17:18:20
Dernière modification le : vendredi 1 décembre 2017 - 01:16:37
Document(s) archivé(s) le : vendredi 3 février 2017 - 14:40:20

Fichier

978-3-662-44722-2_28_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Henrik Linusson, Ulf Johansson, Henrik Boström, Tuve Löfström. Efficiency Comparison of Unstable Transductive and Inductive Conformal Classifiers. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos; Spyros Sioutas; Christos Makris. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-437, pp.261-270, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44722-2_28〉. 〈hal-01391053〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

30