
HAL Id: hal-01391082
https://hal.inria.fr/hal-01391082v2

Submitted on 4 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Application Offloading through Ant-inspired
Decision-Making

Roya Golchay, Frédéric Le Mouël, Julien Ponge, Nicolas Stouls

To cite this version:
Roya Golchay, Frédéric Le Mouël, Julien Ponge, Nicolas Stouls. Automated Application Offloading
through Ant-inspired Decision-Making. Proceedings of the 13th International Conference on New
Technologies in Distributed Systems (NOTERE’2016), Jul 2016, Paris, France. <hal-01391082v2>

https://hal.inria.fr/hal-01391082v2
https://hal.archives-ouvertes.fr


Automated Application Offloading through

Ant-inspired Decision-Making

Roya Golchay∗, Frédéric Le Mouël†, Julien Ponge‡ and Nicolas Stouls§

Univ Lyon, INSA Lyon, CITI, F-69621 Villeurbanne, France

Email: ∗roya.golchay@insa-lyon.fr, †frederic.le-mouel@insa-lyon.fr, ‡julien.ponge@insa-lyon.fr, §nicolas.stouls@insa-lyon.fr

Abstract—The explosive trend of smartphone usage as the
most effective and convenient communication tools of human
life in recent years make developers build ever more complex
smartphone applications. Gaming, navigation, video editing,
augmented reality, and speech recognition applications require
considerable computational power and energy. Although smart-
phones have a wide range of capabilities - GPS, WiFi, cameras
- their inherent limitations - frequent disconnections, mobility -
and significant constraints - size, lower weights, longer battery life
- make difficult to exploiting their full potential to run complex
applications. Several research works have proposed solutions in
application offloading domain, but few ones concerning the highly
changing properties of the environment. To address these issues,
we realize an automated application offloading middleware,
ACOMMA, with dynamic and re-adaptable decision-making
engine. The decision engine of ACOMMA is based on an ant-
inspired algorithm.

I. INTRODUCTION

The explosive trend of smartphone usage as the most

effective and convenient communication tools of human life

in recent years - with the 50 percent growth rate in 2013 [1]

- make developers to build ever more complex smartphone

applications such as gaming, navigation, video editing, aug-

mented reality, and speech recognition, which require consid-

erable computational power and energy.

However smartphones have a wide range of capabilities,

typically including GPS, WiFi, cameras, gigabytes of storage,

and gigahertz-speed processors, the importance and desirabil-

ity of smaller sizes, lower weights and longer battery life as

well as their inherent limitations such as resource scarcity,

frequent disconnections and mobility, make them difficult to

exploiting their full potential to run these complex applications

and have the best performance.

It seems to keep pace with increasing performance re-

quirements, mobile users have to continually upgrade their

hardware to augment the computational power as applications

become more complex but still experience some limitations

specially short battery lifetime. More feasible approach is em-

powering mobile devices using software solutions-application

offloading, that improves the performance and the energy

consumption of resource-poor mobile devices by using the

power of one or more resource-rich stations. A key area

of application offloading is to apply a remote execution of

an application - totally or partially - to resource-intensive

devices to improve performance and energy consumption.

The surrogate can be a powerful stationary device or a set

of processors. Drastic evolution of wireless technologies that

make network connectivity ubiquitous and successful practices

of Cloud Computing for stationary machines are motivating

factors to bring the cloud to the vicinity of a mobile from an

offloading perspective. As a result, Mobile Cloud Computing

was introduced to enable rich mobile computing by extending

the on-demand computing vision of Cloud Computing and

enrich smartphones and address their issues of computational

power and battery lifetime by executing complete mobile

applications or identified resource intensive components of

a partitioned mobile application on the cloud-based surro-

gates [2]. Several research works have proposed solutions [3],

[4] but proposed partitioning mechanisms are not appropriate

to highly changing environments.

To address these issues, we propose ACOMMA, an Ant-

inspired Collaborative Application Offloading Middleware for

Mobile Applications. ACOMMA is an automated applica-

tion offloading middleware with dynamic and re-adaptable

decision-making engine based on an ant-inspired algorithm. To

take more flexible offloading decisions, ACOMMA performs

fine-graineded method-level application partitioning. Our pro-

posed middleware, by dint of its service-based architecture,

could be used by devices that support web services without any

special requirements. This middleware is also equipped with

a learning-based decision-making process to avoid running

a complete decision-making process in duplicate situations.

To eliminate the role of developer for special development

of mobile application or its annotating for application par-

titioning, we propose an application transformer to modify

the application into an adaptable form with this offloading

middleware.

The underlying motivation for ACOMMA lies in the fol-

lowing intuition: however Mobile Cloud Computing is very

beneficial, there are still some challenges arise from mobile

devices, clouds and their interactions. Meanwhile address-

ing communication and application development complexity

challenges, ACOMMA focuses on offloading performance. It

applies an ant-inspired algorithm to perform fine-grained and

method-level application offloading considering two perfor-

mance criteria at the same time. In short, our main contri-

butions consist in:

• designing and developing an open and service-oriented

architecture that makes ACOMMA adaptable to devices

that support web services without special API require-

ments,



• making ACOMMA flexible with any Android mobile

application due to its application transformer,

• designing an automated offloading middleware that dy-

namically makes efficient offloading decisions consid-

ering the changing environment by using bi-objective

algorithm,

• adding a learning feature in the decision-making pro-

cess to avoid re-execution of decision-making algorithms

when offloading decisions have already been taken in

similar situations.

In what follows, we first explain in Section II how a mo-

bile application is automatically modified by our application

transformer to be able to be offloaded by ACOMMA. Then

we present the design of the architecture of ACOMMA in

Section III and its decision-making engine that decides of the

offloading based on an ant-inspired algorithm in Section IV.

We describe our implementation and experimental evaluations

of the prototype in Section V. We survey related work in

Section VI, and finally conclude and discuss limitations in

Section VII.

II. APPLICATION TRANSFORMATION

Regardless of the current situation in the mobile applica-

tions, there may exist some components that must be executed

locally because of their inherent dependencies to the mobile

device. In almost all existing offloading middlewares, even in

the ones that take online offloading decisions, the developer

is responsible in detecting and annotating these components.

Its is clear that the quality of offloading is highly dependent

on knowledge, expertises, and experience of the developers

who annotate applications. Any small issue in annotating may

cause big changes in the offloading process. To eliminate any

need for manual annotation and modification, we propose an

application transformer that detects offloadable parts of the

application by applying some rules.

To be adaptable with a client-server architecture and sup-

porting REST/HTTP communication in its service-oriented

model, this application transformer also has the responsibility

of code modification. The application methods which are

offloadable parts in our method-level application offloading,

should be modified in a form where methods act as services

and are accessible via REST. Servicizing is what we call this

changing process.

The transformer picks the application as the input and

creates the modified application in output. Furthermore, to

be located on the server, a version of the application is

provided that adds the accountability to services for any

method. Depending on the circumstances, this transformer can

be run directly on the mobile device or on any other machine,

and the modified application in output is transferred to the

mobile device for executing.

Figure 1 illustrates the flow of a mobile application execu-

tion with the transformer. The application transformer gets the

source code and generates a new version of it with offloadable

servicized method calls. This new source code is transformed

to bytecode by the compiler and the virtual machine interprets

Fig. 1. Mobile application execution flow with servicization modifications

the stream of bytecode as a sequence of instructions and then

executes it to produce desired output.

To supports applications without open source codes, we add

an agent to the execution flow that transforms the bytecode

into a sevicized bytecode before the interpreting by the virtual

machine. Although the ability to change the bytecode makes

the approach more general and dynamic, it complicates the

modification process and reduces the efficiency because the

agent must be present on the mobile device. The availability

of the source code, however, allows the application trans-

formation process to be done on a system other than the

mobile device and the bytecode of the modified application

to be installed on the mobile device. Having the development

chain before the mobile device increases the efficiency and

performance, but decreases the dynamism while the system is

no longer able to exert next changes during the execution.

III. THE ARCHITECTURE OF ACOMMA

ACOMMA has an open and service-oriented architecture

with an offloading service, a context monitoring service and

a profiling service as building blocks. This open architecture

with REST as the communication API makes ACOMMA

generic and usable for the devices that support web services.

The offloading service is responsible for partitioning a mobile

application in a dynamic way and performs offloading. The

context monitoring and profiling services collect the required

data for the offloading service. They provide environmental

information such as application type, cloud information and

communication conditions as well as user information such

as his requirements, preferences, and limitations. As shown

in Figure 2, the offloading service gets a mobile application

as an input, employs the collected data of context monitoring

and profiling services, determines offloading by the help of

its decision-making algorithm in decision engine, especially

which parts of the application lead to higher performance, and

finally performs offloading.

We consider a mobile application modelled as a graph where

vertices and edges represent methods and their dependencies

in term of method calls respectively. In such a call graph,

the graph partitions represent the executing environments of

partition members.



Fig. 2. An architectural view of offloading building blocks in ACOMMA

The decision engine is in charge of partitioning the call

graph in an efficient way to determine offloadable parts of the

application. Unlike existing offloading middlewares that use

linear programming to cut a graph based on a single objective,

we are interested in taking into account two criteria at the

same time for graph partitioning. This bi-criteria decision-

making process helps ACOMMA to perform more dynamic

and flexible offloading concerning the highly changing en-

vironment. To take such a decision, as the constraints in

dynamic environments can never be guaranteed to an optimal

solution, we need to apply heuristic approaches like genetic

algorithms, fuzzy logics or bio-inspired algorithms. Because of

their collaborative decision-making process, self-organization,

autonomy, and vigor for solving optimization problems, we

use bio-inspired algorithms and especially an ant-inspired

algorithm that is robust, self-organized and flexible.

IV. DYNAMIC DECISION-MAKING

A. Shortest Path Problem

Ant-inspired algorithms are used to solve different problem

types, but they are more adapted to Shortest Path Problems.

We propose the partitioning problem investigated as a Shortest

Path Problem where the application call graph is modified in

a way that its nodes belong to local and remote executing

environments. In the graph modification process, as shown

in Figure 3, all graph nodes are duplicated instead of having

only one single node and consequently their coupling vertices.

As the nodes represent the methods, the original nodes show

methods on the mobile device and the duplicated ones refer

to the corresponding methods on the cloud.

In the transformed graph, choosing Path1 shows the local

execution of method2, where Path2 represents its remote

execution in the cloud. The goal of Shortest Path Problems

is finding a path between two nodes in a weighted graph

such that the sum of the weights of its constituent edges is

minimized. As we want to take bi-criteria offloading decisions,

Fig. 3. Modifying call graph to be compatible to Shortest Path problem

there are two attributed weights for each edge. We consider

CPU usage and execution time as constraints of the decision-

making and aim to find an offloading solution to minimize both

of them. For the same mobile device and cloud, any change in

the network conditions directly affects the execution time, for

example, more network load leads to an increase in the execu-

tion time. There is also a direct relationship between the CPU

usage and the battery consumption, the more an application

uses CPU power, the more it consumes battery. Although it

seems that the applied criteria are just the execution time and

CPU usage, the network communication conditions and the

amount of battery consumption also influence the offloading

decision-making process.

Fig. 4. Solution set for Shortest Path Problem :(4,5),(6,4)

Unlike single-objective optimization problems resulting in

a scaler optimal solution, solving bi-objective optimization

problems concentrate in finding a tradeoff between two objec-

tives and resulting in a set of solutions called non-dominated

solutions. For example, in Figure 4, there exist four paths

between the start and the end points: ’start-A-D-end’, ’start-

A-C-end’, ’start-A-C-E-end’ and ’start-B-E-end’ with their

respective related objective functions of (5, 5), (4, 5), (6, 6)

and (6, 4). In this graph, the objective functions (5,5) and (6,6)

are dominated by (4,5), however between (4,5) and (6,4) the

best path cannot be chosen because none is dominated by the

other. As a result, the non-dominated paths are ’start-A-C-end’

and ’start-B-E-end’ with (4,5),(6,4) as objective functions.



Based on our knowledge, this is the first time that an

application partitioning problem in offloading decision-making

process is considered as a Shortest Path Problem. In the

following, we explain how ACOMMA utilizes Ant Colony

Optimization algorithm to solve the Shortest Path Problem.

B. Decision-making using Ant Colony Optimization

In nature, an ant starts looking for food in a random manner.

After having found the food, they make more or less directly

to the nest, depositing an odorous called pheromone. Thanks

to this trace, other ants can come to find food. Over time,

the pheromone trail starts to evaporate. The more time it

takes for an ant to travel down the path and back again, the

more time the pheromones have to evaporate. A short path,

by comparison, gets marched over more frequently, and thus

the pheromone density becomes higher on shorter paths than

longer ones.

We apply [5] as Ant Colony Optimization algorithm (ACO)

in which two pheromone matrices are intended for two objec-

tives. These pheromone matrices are updated at the end of each

iteration separately based on the generated results. In addition,

when an ant moves from one node to another, the pheromone

trail is locally updated according to the evaporation rate. An

artificial ant moves from one node to the next one based on

a series of transition rules and with the help of two heuristic

parameters.

When an application starts, as an initialization phase,

ACOMMA creates application’s service graph in an aforemen-

tioned form where both costs of CPU usage and execution time

of each method are set to zero. For the first method call, when

the algorithm executes for the first time, the non-dominated

set consists of all possible paths. ACOMMA randomly selects

one of these solutions and execute the application. Then,

weights of all edges of selected path are updated with real

values of each method execution costs. So, during the next

algorithm execution, this selected path as well as the paths

within common edges won’t be in the non-dominated set.

After several executions, all graph vertices will have real

weights progressively, and Ant Colony Optimization algorithm

by applying local and global updates of pheromone trail, gives

different non-dominated paths.

To prevent the algorithm execution for duplicate situations,

we establish a learning-based decision-making process that

uses the previous decisions made using the Ant Colony

Optimization algorithm for the same application and the same

situation. ACOMMA saves the history of each application run

as a string of executed methods and their execution platform

in a cache and applies a simple string matching algorithm, to

find the appropriate execution string in this history. The next

section shows the evaluations of the decision-making process

of ACOMMA.

V. IMPLEMENTATION AND EVALUATIONS

A. Benchmark applications and Experimental platforms

To evaluate the performance of ACOMMA, we start with

four micro-benchmarks and extend our tests with two macro-

benchmarks that are representative of popular applications.

As micro-benchmarks, we develop some mathematical func-

tions of Fibonacci, Matrix multiplication, Matrix determinant,

and Integrate. Although these functions are short and simple,

they are different enough to allow us to do a variety of tests

at the first step. Fibonacci and Matrix multiplications are both

composed of a few number of methods but with different math-

ematical complexities. Fibonacci repeats a basic mathematical

operation many times where matrix multiplications do some

more complicated calculations. Determinant and Integrate have

some number of methods that could be offloaded where the

determinant works recursively. Varying the inputs of each of

these functions leads to interesting results.

Our macro-benchmarks are Monte Carlo and Face recogni-

tion algorithms. Monte Carlo algorithm is a randomized algo-

rithm whose running time is deterministic, but whose output

may be incorrect with a certain (typically small) probability.

This algorithm could be used for the choice of the next move in

a chess game. The Face recognition algorithm tries to match a

given face image to a set of given face images using a number

of eigenfaces [6] and is representative of image processing

applications.

We use a MacBook Pro with 8 GB of memory and a 2,53

GHz Intel processor dual-core as our remote server. This server

has OS X 10.9.5 Mavericks as operating system. We use

two different mobile clients to evaluate the decision-making

process. The first one is a Samsung Galaxy SII with 1,2 GHz

dual-core processor and 2GB of memory running Android

version 4.1.2 (Jelly Bean). The second is an Asus Google

Nexus 7 Tablette with quad-core 1.2 GHz processor and 1GB

of memory running Android version 5.1.1 (Lollipop).

To successfully validate ACOMMA, we need to show that

ACOMMA is able to make a correct and efficient offloading

decision to improve application performance by selecting an

appropriate execution path on the application service graph

using the Ant Colony Optimization algorithm. It may also

ameliorate its performance while making offloading decisions

benefiting from its string matching algorithm.

B. Results

To evaluate the decision-making process of ACOMMA, we

run several tests on each benchmarks and we compare the total

execution time and CPU usage of an application execution

when it executes locally on mobile devices with its execution

when offloaded by ACOMMA. To be able to compare the

offloading gain in different execution complexities, we run

each application 25 times for each and with different inputs

(Series 1-4: Fibonnaci 500 to 1500, Multiplication 50x50 to

80x80, Determinant 2 o 5, Integrate 1.0 to 3.0, Recognition

100000x1 to x4, Monte Carlo 10-5 to 40-11).

Since the execution time and CPU usage of application

methods are decision-making criteria that Ant Colony Opti-

mization uses for graph weights while cutting it, we show the

gain regarding these parameters while offloading. As expected

for solutions of the bi-objective optimization problem, the

results show a similar form of gain for both execution time and



Fibonacci Multiplication Determinant Integrate

Success Time CPU Success Time CPU Success Time CPU Success Time CPU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Galaxy S2 Serie 1 60 40.54 20 48 7.6 -16.66 72 31.43 66.67 96 93.97 86.55
Serie 2 64 29.7 18.75 60 11.93 0 100 66.20 93.73 96 96.99 99.49
Serie 3 52 27.25 15.38 52 13.06 0 100 92.82 97.36 96 97.78 99.55
Serie 4 56 31.08 7.14 52 8.37 15.38 100 98.23 99.54 96 98.59 99.81

Nexus 7 Tablette Serie 1 76 13.34 10.53 48 9.74 -8.33 88 32.88 30.30 96 96.84 98.44
Serie 2 52 18.98 23.08 44 7.03 0 96 83.78 82.97 96 98.39 98.65
Serie 3 80 24.38 53.67 56 4.30 -7.14 96 96.23 98.53 96 98.85 99.18
Serie 4 56 13.23 13.69 48 3.72 8.33 100 98.86 99.30 96 99.15 99.55

TABLE I
SUMMARY OF INDIVIDUAL DECISION-MAKING USING ACO ON MICRO BENCHMARKS

Face Recognition MonteCarlo

Success Time CPU Success Time CPU
(%) (%) (%) (%) (%) (%)

Galaxy S2 Serie 1 100 83.92 81.43 96 81.66 99.74
Serie 2 100 87.89 60.47 100 83.72 97.74
Serie 3 100 88.52 75.23 96 94.68 99.92
Serie 4 100 89.98 77.89 96 96.05 99.88

Nexus 7 Tablette Serie 1 96 83.74 89.68 96 95.28 96.73
Serie 2 92 82.09 91.71 100 94.39 97.36
Serie 3 100 80.77 84.82 96 98.64 99.15
Serie 4 96 78.40 75.42 96 99.01 99.34

TABLE II
SUMMARY OF INDIVIDUAL DECISION-MAKING USING ACO ON MACRO-BENCHMARKS

CPU usage. However, Fibonacci and Matrix multiplications

gain in terms of execution time and CPU usage while offloaded

by ACOMMA, the gain of Determinant and Integrate is

much higher. Fibonacci and matrix multiplication use simple

calculations that do not consume considerable resources. In

addition, their consumption growth rate is very small. So

offloading is less efficient for them compared with more

consuming applications and even in some runs, offloading

execution takes more time than local execution. Contrariwise,

Integrate and Matrix determinant are consuming benchmarks

with a significant consumption growth rate as input changing.

Using ACOMMA the most consuming parts of the application

execute on the server and while the execution time of these

parts with different inputs on the server is almost the same,

the total execution time using offloading is in the same range

while the local execution time grows exponentially with more

consuming inputs. In fact, the more the application is resource

consuming, the more we gain using offloading.

Summary Tables I and II show the success rate, time gain

and CPU gain of ACO while applying on different applications

running on different devices for micro-benchmarks and macro-

benchmarks respectively.

The successful runs are the runs with their offloading

execution time less than their local execution time, in other

words, a run is successful if it gains in terms of execution

time while offloading. The average success rate of Fibonacci

and Matrix multiplication is 62% and 59.5% respectively while

they augment to 94% and 96% for Determinant and Integrate.

For Fibonacci and Matrix multiplication, the gain in CPU and

time is at 99%. Coming to macro-benchmarks, the results show

that the gain for Face recognition and Monte Carlo is less than

for Integrate and Determinant, but remains really significant

with an average success ratio of 98% and 97% but with a

gain in time and CPU less important of 78 to 89%. These

applications are all consuming but Face recognition and Monte

Carlo have a larger service graph that needs more time to

find non-dominated solutions. It seems that the efficiency of

ACOMMA, depends on the graph complexity as well as the

resource consumption of its nodes.

Although the overhead of Ant Colony Optimization algo-

rithm of 10% in terms of execution time is quite low compared

to its gain, we apply a simple string matching algorithm to

verify if passing through the paths that are already determined

by Ant Colony Optimization algorithm in previous runs is

beneficial and can lower this overhead. To this end, the already

passed paths are saved in a cache. In the next runs, ACOMMA

searches for matches in the cache firstly, and if not found,

it runs Ant Colony Optimization algorithm. We have tested

string matching without cache invalidation and with it. We

applied periodically cache invalidation based on predefined

run numbers. The results show that by using string matching,

the total execution time is only slightly improved by 2.3%,

but the overall decision-making overhead is reduced to 5 to

7%. There is also no big differences between string matching

improvements with and without cache invalidation. They may

happen for more complex applications with larger service

graphs that imply a larger cache in terms of both path size and

number of paths. The results also show that for Face recogni-

tion and Monte Carlo algorithms, string matching works better

than Integrate and Matrix determinant. We could conclude

that string matching is more adapted for the applications

with more methods and more complicated service graphs so



that Ant Colony Optimization algorithm needs more time to

evaluate a suitable path in it. In such complex applications,

cache invalidation may also be more useful than for simple

applications.

VI. RELATED WORK

The idea of offloading is not a new concept [7], [8], but it

recently attracted much attention as a technique to overcome

smartphone battery issues by partitioning and executing mobile

applications on cloud-based surrogates. A significant amount

of research has been performed to propose solutions to bring

the cloud to the vicinity of a smartphone [9], [10], [11], [12].

In this section, we present a brief history of existing

approaches with a focus on their structural aspects of of-

floading and decisions making mechanisms. In general, the

offloading middleware makes either coarse-grain offloading as

VM migration or fine-grained offloading concerning methods,

jobs, classes, bundles, etc. In both cases, they apply a single-

objective decision-making process to decide what to offload,

either statical at development or dynamical at runtime. Such

a decision-making mechanism for single criteria leads to an

optimal solution while our proposed bi-objective heuristic

approach results in a trade-off between two criteria.

One of the most prominent works in this domain is

MAUI [3]. MAUI is an energy-aware offloading framework

that uses developer code annotations to determine online which

methods from a class must be offloaded if the bandwidth

of the network and the data transfer conditions are ideal.

However, MAUI does not address issues of adapting the

mobile application for different devices and does not make

advantage of the scalability feature of the cloud. ThinkAir [4]

is similar to MAUI in that it provides method-level, semi-

automatic offloading of code. However, ThinkAir focuses more

on scalability issues and parallel execution of the offloaded

tasks. It targets a commercial cloud scenario with multiple

mobile users instead of computation offloading of a single

user. Moreover, ThinkAir provides an efficient way to perform

on-demand resource allocation and exploits parallelism by

dynamically creating, resuming, and destroying VMs in the

cloud when needed. However, since the development of mobile

application uses annotations, the developer must follow a

brute-force approach to adapt his/her application to a particular

device. Unlike MAUI and ThinkAir, in our work, an automated

process defines remotable methods to eliminate developer

burden in the development phase for method annotations.

Also, fine-grained method-level application partitioning in

ACOMMA makes lighter offloading compared with VM mi-

gration in these two middlewares. CloneCloud [13] is another

middleware that profits from fine-grained application offload-

ing, however its static analysis prevents from taking offloading

decisions concerning the current situation. To ensure that

mobile operations could be processed locally or remotely at

bytecode level, CloneCloud also proposes the encapsulation of

the mobile application as a stack into a virtual machine running

in the cloud. Odessa [14] takes dynamic offloading decisions

based on an optimal solution during application partitioning.

Unlike most of the middlewares that used linear programming

to find such an optimal solutions, Odessa employs a greedy

algorithm to this end.

VII. CONCLUSION

In this work, we focus on the mobile application augmenta-

tion by offloading to remote resources in the context of Mobile

Cloud Computing. We introduce ACOMMA, an Ant-inspired

Collaborative Offloading Middleware for Mobile Applications

- a fine-grained method-level application offloading. Offload-

ing decisions use a bi-Objective Ant Colony Optimization

algorithm with execution time and CPU usage as criteria.

To avoid running Ant Colony Optimization algorithm for any

application offloading requests, we propose a learning-based

decision-making model that searches an already taken decision

in similar situations in previous execution trails and applies it

to the current offloading process. ACOMMA works greatly to

offload the applications that are more complex and resource-

consuming. The more the application is consuming the more

performance is augmented. This gain is high enough - 95 to

97% of success with 75 to 99% of gain - to consider the 5-7%

overhead of ACOMMA as acceptable.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index:
Global Mobile Data Traffic Forecast Update,”
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white_paper_c11-520862.html, 2014.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84
– 106, 2013.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” in Proc. of MobiSys ’10, 2010, pp. 49–62.

[4] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. of IEEE INFOCOM ’12, March 2012,
pp. 945–953.

[5] K. Ghoseiri and B. Nadjari, “An ant colony optimization algorithm for
the bi-objective shortest path problem,” Appl. Soft Comput., vol. 10,
no. 4, pp. 1237–1246, Sep. 2010.

[6] “Face recognition algorithm.” [Online]. Available:
https://code.google.com/p/javafaces/.

[7] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi, “Tactics-
based remote execution for mobile computing,” in Proc. of MobiSys ’03,
2003, pp. 273–286.

[8] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I.
Yang, “The case for cyber foraging,” in Proc. of ACM SIGOPS EW ’10,
2002, pp. 87–92.

[9] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the
cloud: Enabling mobile phones as interfaces to cloud applications,” in
Proc. of Middleware ’09, 2009, vol. 5896, pp. 83–102.

[10] M. S. Gordon, D. Anoushe, J. Scott, M. Z. Morley, and M. X. Chen,
“Comet: Code offload by migrating execution transparently,” in Proc. of

OSDI ’12, 2012, pp. 93–106.
[11] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden,

“Wishbone: Profile-based partitioning for sensornet applications,” in
Proc. of NSDI ’09, 2009, pp. 395–408.

[12] B. Gao, L. He, L. Liu, K. Li, and S. Jarvis, “From mobiles to clouds:
Developing energy-aware offloading strategies for workflows,” in Proc.

of GRID ’12, Sept 2012, pp. 139–146.
[13] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:

Elastic execution between mobile device and cloud,” in Proc. of EuroSys

’11, 2011, pp. 301–314.
[14] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-

dan, “Odessa: Enabling interactive perception applications on mobile
devices,” in Proc. of MobiSys ’11, 2011, pp. 43–56.


