L. K. Hansen and P. Salamon, Neural network ensembles, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.10, pp.993-1001, 1990.
DOI : 10.1109/34.58871

M. P. Perrone and L. N. Cooper, When networks disagree: Ensemble methods for hybrid neural networks, Neural Networks for Speech and Image Processing, 1993.
DOI : 10.1142/9789812795885_0025

S. Hashem, Optimal Linear Combinations of Neural Networks, Neural Networks, vol.10, issue.4, pp.599-614, 1997.
DOI : 10.1016/S0893-6080(96)00098-6

Z. H. Zhou, J. Wu, and W. Tang, Ensembling neural networks: Many could be better than all, Artificial Intelligence, vol.137, issue.1-2, pp.239-263, 2002.
DOI : 10.1016/S0004-3702(02)00190-X

L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, IEEE Transactions on Neural Networks, vol.18, issue.3, 2004.
DOI : 10.1109/TNN.2007.897478

L. Rokach, Ensemble-based classifiers, Artificial Intelligence Review, vol.13, issue.4, pp.1-39, 2010.
DOI : 10.1007/s10462-009-9124-7

G. Seni and J. Elder, Ensemble Methods in Data Mining, 2010.

J. Kittler, M. Hatef, R. P. Duin, and J. Matas, On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.3, pp.226-239, 1998.
DOI : 10.1109/34.667881

L. Xu, A. Krzyzak, and C. Y. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.3, pp.418-435, 1992.
DOI : 10.1109/21.155943

L. Lam and C. Y. Suen, A theoretical analysis of the application of majority voting to pattern recognition, Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No.94CH3440-5), pp.418-420, 1994.
DOI : 10.1109/ICPR.1994.576970

T. K. Ho, J. J. Hull, and S. N. Srihari, Decision combination in multiple classifier systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, issue.1, pp.66-75, 1994.

L. Lam and C. Y. Suen, Application of majority voting to pattern recognition: an analysis of its behavior and performance, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.27, issue.5, pp.553-567, 1997.
DOI : 10.1109/3468.618255

S. J. Brams and P. C. Fishburn, Voting Procedures, Handbook of Social Choice and Welfare, vol.1, 2002.

K. Woods, W. P. Kegelmeyer, and K. Bowyer, Combination of multiple classifiers using local accuracy estimates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.4, pp.405-410, 1997.
DOI : 10.1109/34.588027

T. Poggio and F. Girosi, Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks, Science, vol.247, issue.4945, pp.978-982, 1990.
DOI : 10.1126/science.247.4945.978

F. Girosi, M. Jones, and T. Poggio, Regularization Theory and Neural Networks Architectures, Neural Computation, vol.26, issue.3, pp.219-269, 1995.
DOI : 10.1016/0893-6080(90)90004-5

T. Evgeniou, M. Pontil, and T. Poggio, Regularization Networks and Support Vector Machines, Advances in Computational Mathematics, 2000.

H. Kashima, T. Ide, T. Kato, and M. Sugiyama, Recent Advances and Trends in Large-Scale Kernel Methods, IEICE Transactions on Information and Systems, vol.92, issue.7, pp.1338-1353, 2009.
DOI : 10.1587/transinf.E92.D.1338

C. M. Bishop, A. Frank, and A. Asuncion, Neural Network for Pattern Recognition, 1995.