X. Zhang, H. Fujita, J. Chen, and Z. Zhang, Effect of Training Artificial Neural Networks on 2D Image: An Example Study on Mammography, 2009 International Conference on Artificial Intelligence and Computational Intelligence, pp.214-218, 2009.
DOI : 10.1109/AICI.2009.475

N. Ibrahim, H. Fujita, T. Hara, and T. Endo, Automated detection of clustered microcalcifications on mammograms: CAD system application to MIAS database, Physics in Medicine and Biology, vol.42, issue.12, p.2577, 1997.
DOI : 10.1088/0031-9155/42/12/021

I. El-naqa, Y. Yang, N. Miles, . Wernick, P. Nikolas et al., Support vector machine learning for detection of microcalcifications in mammograms, Proceedings IEEE International Symposium on Biomedical Imaging, pp.201-204, 2002.
DOI : 10.1109/ISBI.2002.1029228

R. Rolando, H. Hernández-cisneros, and . Terashima-mar?n, Feature selection for the classification of both individual and clustered microcalcifications in digital mammograms using genetic algorithms, A Recombination of the 15th International Conference Genetic Algorithms (ICGA) and the 11th Genetic Programming Conference (GP), 2006.

J. Walker, K. Völk, L. Stephen, J. F. Smith, and . Miller, Parallel evolution using multi-chromosome cartesian genetic programming. Genetic Programming and Evolvable Machines, pp.417-445, 2009.

P. Zhang, B. Verma, and K. Kumar, Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection, Pattern Recognition Letters, vol.26, issue.7, pp.909-919, 2005.
DOI : 10.1016/j.patrec.2004.09.053

M. Vasantha and V. Bharathi, Classifications of mammogram images using hybrid features, European Journal of Scientific Research, pp.87-96

A. Gulzar and . Khuwaja, Breast cancer detection using mammography, WSEAS Transactions on Mathematics, vol.3, pp.317-321, 2004.

J. Martí, J. Freixenet, X. Munoz, and A. Oliver, Active Region Segmentation of Mammographic Masses Based on Texture, Contour and Shape Features, Pattern Recognition and Image Analysis, pp.478-485, 2003.
DOI : 10.1007/978-3-540-44871-6_56

-. Byung, M. Hong, and . Brady, A topographic representation for mammogram segmentation, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003, pp.730-737, 2003.

-. Byung, B. Hong, and . Sohn, Segmentation of Regions of Interest in Mammograms in a Topographic Approach, IEEE Transactions on Information Technology in Biomedicine, vol.14, issue.1, pp.129-139, 2010.
DOI : 10.1109/TITB.2009.2033269

N. Saidin, H. Amylia-mat, U. K. Sakim, I. L. Ngah, and . Shuaib, Segmentation of breast regions in mammogram based on density: A review, 2012.

M. Abdalla, A. Mutaz, S. Dress, and N. Zaki, Detection of Masses in Digital Mammogram Using Second Order Statistics and Artificial Neural Network, International Journal of Computer Science and Information Technology, vol.3, issue.3, pp.176-186, 2011.
DOI : 10.5121/ijcsit.2011.3312

Y. Zhang, N. Tomuro, J. Furst, and D. S. Raicu, Image enhancement and edge-based mass segmentation in mammogram, Medical Imaging 2010: Image Processing, pp.76234-76242, 2010.
DOI : 10.1117/12.844492

P. Delogu, M. E. Fantacci, P. Kasae, and A. Retico, Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier, Computers in Biology and Medicine, vol.37, issue.10, pp.1479-1491, 2007.
DOI : 10.1016/j.compbiomed.2007.01.009

A. Tahmasbi, F. Saki, B. Shahriar, and . Shokouhi, Mass diagnosis in mammography images using novel FTRD features, 2010 17th Iranian Conference of Biomedical Engineering (ICBME), pp.1-5, 2010.
DOI : 10.1109/ICBME.2010.5704939

K. Belal, I. Elfarra, and . Abuhaiba, Mammogram computer aided diagnosis, International Journal of Signal Processing Image Processing and Pattern, vol.5, issue.4, pp.1-30, 2012.

F. Eddaoudi, F. Regragui, A. Mahmoudi, and N. Lamouri, Masses detection using svm classifier based on textures analysis, Applied Mathematical Sciences, vol.5, issue.8, pp.367-379, 2011.

J. F. Miller and P. Thomson, Cartesian genetic programming, Proc. Eu- roGP'2000, pp.121-132, 2000.
DOI : 10.1007/978-3-642-17310-3_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Arbab-masood-ahmad, S. A. Khan, J. F. Mahmud, and . Miller, Breast cancer detection using cartesian genetic programming evolved artificial neural networks, Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, pp.1031-1038, 2012.

A. Masood, A. , and M. Khan, Bio-signal processing using cartesian genetic programming evolved artificial neural network (cgpann), Frontiers of Information Technology (FIT), 2012 10th International Conference on, pp.261-268, 2012.

M. Arbab-masood-ahmad, S. A. Khan, and . Mahmud, Classification of arrhythmia types using cartesian genetic programming evolved artificial neural networks, In Engineering Applications of Neural Networks, pp.282-291, 2013.

J. F. Miller and P. Thomson, Cartesian genetic programming, Proc. of the 3rd European Conf. on Genetic Programming, pp.121-132, 2000.

R. Haralick, K. Shanmugam, and I. Dinstein, Texture features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, 1973.