Automatically Detected Feature Positions for LBP Based Face Recognition

Abstract : This paper presents a novel approach for automatic face recognition based on the Local Binary Patterns (LBP). One drawback of the current LBP based methods is that the feature positions are fixed and thus do not reflect the properties of the particular images. We propose to solve this issue by a method that automatically detects feature positions in the image. These key-points are determined using the Gabor wavelet transform and k-means clustering algorithm. The proposed method is evaluated on two corpora: AT&T Database of Faces and our Czech News Agency (ČTK) dataset containing uncontrolled face images. The recognition rate on the first dataset is 99.5% which represents 2.5% improvement compared to the original LBP method. The best recognition rate obtained on the ČTK corpus is 59.1% whereas the original LBP method reaches only 38.1%.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.246-255, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_24〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391321
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 10:58:24
Dernière modification le : vendredi 1 décembre 2017 - 01:16:36
Document(s) archivé(s) le : samedi 4 février 2017 - 12:57:26

Fichier

978-3-662-44654-6_24_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ladislav Lenc, Pavel Král. Automatically Detected Feature Positions for LBP Based Face Recognition. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.246-255, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_24〉. 〈hal-01391321〉

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

43