Limited Generalization Capabilities of Autoencoders with Logistic Regression on Training Sets of Small Sizes

Abstract : Deep learning is promising approach to extract useful nonlinear representations of data. However, it is usually applied with large training sets, which are not always available in practical tasks. In this paper, we consider stacked autoencoders with logistic regression as the classification layer and study their usefulness for the task of image categorization depending on the size of training sets. Hand-crafted image descriptors are proposed and used for training autoencoders in addition to pixel-level features. New multi-column architecture for autoencoders is also proposed. Conducted experiments showed that useful nonlinear features can be learnt by (stacked) autoencoders only using large training sets, but they can yield positive results due to redundancy reduction also on small training sets. Practically useful results (9.1% error rate for 6 classes) were achieved only using hand-crafted features on the training set containing 4800 images.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.256-264, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_25〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391322
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 10:58:38
Dernière modification le : dimanche 25 février 2018 - 14:48:02
Document(s) archivé(s) le : samedi 4 février 2017 - 13:16:18

Fichier

978-3-662-44654-6_25_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Alexey Potapov, Vita Batishcheva, Maxim Peterson. Limited Generalization Capabilities of Autoencoders with Logistic Regression on Training Sets of Small Sizes. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.256-264, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_25〉. 〈hal-01391322〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

48