M. Ben-akiva and D. Bolduc, Multinomial probit with a logit kernel and a general parametetric specipication of the covariance structure. Working paper, MIT, 1996.

D. Brownstonel and K. Train, Forecasting new product penetration with flexible substitution patterns, Journal of Econometrics, pp.109-129

N. Cardell and F. Dunbar, Measuring the societal impacts of automobile downsizing, Transportation Research Part A: General, vol.14, issue.5-6, pp.423-434
DOI : 10.1016/0191-2607(80)90060-6

J. Dean, Demand forecasting for a new product

D. Fletcher and E. Goss, Forecasting with neural networks, Information & Management, vol.24, issue.3, pp.159-167, 1993.
DOI : 10.1016/0378-7206(93)90064-Z

E. H. Francis, L. , and C. , Modified support vector machines in financial time series forecasting, Neurocomputing, vol.48, pp.847-861, 2002.

A. Hasanat, Object Class Recognition Using NEAT-Evolved Artificial Neural Network, 2008 Fifth International Conference on Computer Graphics, Imaging and Visualisation, pp.271-275, 2008.
DOI : 10.1109/CGIV.2008.35

J. Cao, L. Tay, and H. , Support vector machine with adaptive parameters in financial time series forecasting, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1506-1518, 2003.
DOI : 10.1109/TNN.2003.820556

I. Kaastra and S. Milton, Forecasting futures trading volume using neural networks, Journal of Futures Markets, vol.3, issue.8, pp.853-970, 1995.
DOI : 10.1002/fut.3990150806

K. G. Kempf and P. Keskinocak, Uzsoy: Planning production and inventories in the extended enterprise, International Series in Operations Research and Management Science, vol.152, issue.2, pp.588-589, 2011.

G. M. Khan, S. Khan, and F. Ullah, Short-term daily peak load forecasting using fast learning neural network. Intelligent Systems Design and Applications (ISDA) pp, pp.843-848, 2011.

C. Y. Lo, Back Propagation Neural Network on the Forecasting System of Sea Food Material Demand, Communications in Computer and Information Science, vol.36, issue.2, pp.147-154, 2011.
DOI : 10.1016/j.eswa.2007.11.055

D. Mcfadden, Conditional logit analysis of qualitative choice behavior. Frontiers in econometrics, 1973.

J. H. Min and Y. C. Lee, Bankruptcy prediction using support vector machinewith optimal choice of kernel function parameters 48, pp.847-861, 2002.

D. Petrovic and A. Duenas, A fuzzy logic based production scheduling/rescheduling in the presence of uncertain disruptions, Fuzzy Sets and Systems, vol.157, issue.16, pp.2273-2285, 2006.
DOI : 10.1016/j.fss.2006.04.009

D. Revelt and K. Train, Mixed Logit with Repeated Choices: Households' Choices of Appliance Efficiency Level, Review of Economics and Statistics, vol.1413, issue.1, 1998.
DOI : 10.2307/1925525

X. Yao, Evolving artificial neural networks, In Proceedings of the IEEE, vol.87, issue.9, pp.1423-1447, 1999.

X. Yao and M. M. Islam, Evolving artificial neural network ensembles, Computational Intelligence Magazine, IEEE, vol.3, issue.1, pp.31-42, 2008.