Identifying Features with Concept Drift in Multidimensional Data Using Statistical Tests

Abstract : Concept drift is a common problem in the data streams, which makes the classifiers no longer valid. In the multidimensional data, this problem becomes difficult to tackle. This paper examines the possibilities of identifying the specific features, in which concept drift occurs. This allows to limit the scope of the necessary update in the classification system. As a tool, we select a popular Kolmogorov-Smirnov test statistic.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.405-413, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_40〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391341
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 11:02:55
Dernière modification le : vendredi 1 décembre 2017 - 01:16:36
Document(s) archivé(s) le : samedi 4 février 2017 - 13:16:01

Fichier

978-3-662-44654-6_40_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Piotr Sobolewski, Michał Woźniak. Identifying Features with Concept Drift in Multidimensional Data Using Statistical Tests. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.405-413, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_40〉. 〈hal-01391341〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

8