D. J. Newman and A. Asuncion, UCI machine learning repository, 2007.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and issues in data stream systems, Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '02, pp.1-16, 2002.
DOI : 10.1145/543613.543615

A. Dries and U. Rückert, Adaptive concept drift detection, Statistical Analysis and Data Mining, vol.41, issue.1??????2, pp.311-327, 2009.
DOI : 10.1002/sam.10054

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Greiner, A. J. Grove, and D. Roth, Learning cost-sensitive active classifiers??????This extends the short conference paper [19]., Artificial Intelligence, vol.139, issue.2, pp.137-174, 2002.
DOI : 10.1016/S0004-3702(02)00209-6

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion (Grundlehren der mathematischen Wissenschaften), 2004.

C. Jeffrey, R. H. Schlimmer, and J. Granger, Incremental learning from noisy data, Mach. Learn, vol.1, issue.3, pp.317-354, 1986.

N. V. Smirnov, Table for Estimating the Goodness of Fit of Empirical Distributions, The Annals of Mathematical Statistics, vol.19, issue.2, pp.279-281, 1948.
DOI : 10.1214/aoms/1177730256

P. Sobolewski and M. Wozniak, Sequential Tests of Statistical Hypotheses, The Annals of Mathematical Statistics, vol.16, issue.2, pp.117-186, 1945.

P. Sobolewski and M. Wozniak, LDCnet: Minimizing the cost of supervision for various types of concept drift, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), pp.68-75, 2013.
DOI : 10.1109/CIDUE.2013.6595774

P. Sobolewski and M. Wozniak, Comparable Study of Statistical Tests for Virtual Concept Drift Detection, CORES, volume 226 of Advances in Intelligent Systems and Computing, pp.329-337, 2013.
DOI : 10.1007/978-3-319-00969-8_32

F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics Bulletin, vol.1, issue.6, pp.80-83, 1945.
DOI : 10.2307/3001968

J. Wolfowitz, On Wald's Proof of the Consistency of the Maximum Likelihood Estimate, The Annals of Mathematical Statistics, vol.20, issue.4, pp.601-602, 1949.
DOI : 10.1214/aoms/1177729953

I. Zliobaite and L. I. Kuncheva, Determining the training window for small sample size classification with concept drift, Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW '09, pp.447-452, 2009.