Solar Radiation Time-Series Prediction Based on Empirical Mode Decomposition and Artificial Neural Networks

Abstract : This paper presents a new model for daily solar radiation prediction. In order to capture the hidden knowledge of existing data, a time-frequency analysis on past measurements of the solar energy density is carried out. The Hilbert-Huang transform (HHT) is employed for the representation of the daily solar irradiance time series. A set of physical measurements and simulated signals are selected for the time series analysis. The empirical mode decomposition is applied and the adaptive basis of each raw signal is extracted. The decomposed narrow-band amplitude and frequency modulated signals are modelled by using dynamic artificial neural networks (ANNs). Nonlinear autoregressive networks are trained with the average daily solar irradiance as exogenous (independent) input. The instantaneous value of solar radiation density is estimated based on previous values of the time series and previous values of the independent input. The results are promising and they reveal that the proposed system can be incorporated in intelligent systems for better load management in photovoltaic systems.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.447-455, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_44〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391346
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 11:04:01
Dernière modification le : mercredi 27 décembre 2017 - 14:04:02
Document(s) archivé(s) le : samedi 4 février 2017 - 13:28:27

Fichier

978-3-662-44654-6_44_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Petros-Fotios Alvanitopoulos, Ioannis Andreadis, Nikolaos Georgoulas, Michalis Zervakis, Nikolaos Nikolaidis. Solar Radiation Time-Series Prediction Based on Empirical Mode Decomposition and Artificial Neural Networks. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.447-455, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_44〉. 〈hal-01391346〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

20