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TSK Fuzzy Modeling with Nonlinear Consequences 
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Abstract. We propose to generalize TSK fuzzy model applying nonlinear func-
tions in the rule consequences. We provide the model description and parame-
terization and discus the problem of model training and we recommend PSO for 
tuning parameters in membership functions and in nonlinear part of a rule con-
sequence. We also propose some more or less formalized approach to nonlinear 
consequence selection and construction. Several examples demonstrate the 
main features of the proposed fuzzy models. The proposed approach reduces 
the average obtained model Root Mean Square Error (RMSE) with regard to the 
linear fuzzy model, as well that it allows to reduce the model complexity pre-
serving the desired accuracy. 

Keywords: fuzzy modeling, TSK fuzzy model, fuzzy model training. 

1 Introduction 

Among various fuzzy modeling techniques the approach proposed by Takagi, Sugeno 
and Kang [1, 2], so called TSK model, remains one of the most popular and effective. 
The standard TSK model employs affine functions in consequences of fuzzy rules. So 
the idea of modeling is based on local linear models dominating if the rule activation 
strength is high. The model possesses the universal approximation property [3] but in 
many practical problems the number of rules to achieve the desired accuracy is really 
high. Motivated by many experiences from modeling mechatronic systems (see ex-
ample 2 below) we claim that it is possible to propose local nonlinear models in many 
practical applications. Having some knowledge on the nature of the modeled phe-
nomenon we may foresee nonlinear functions that should appear in the model, even if 
we are not sure about the exact parameters of these functions.  

In this contribution we propose to generalize TSK model by accepting nonlinear 
functions of model inputs in fuzzy rule consequences. We propose a formal model 
description and parameterization. Next we consider the problem of model training 
from the numerical data, which is more difficult than in the standard case. We also 
propose some formal methods to develop nonlinear consequences. The aim of the 
proposed modification is to reduce the model complexity preserving the desired accu-
racy, and we demonstrate on several examples that that it really happens. 

The idea of using nonlinear functions in fuzzy rule consequences was already men-
tioned in literature, but only particular cases were considered. In [4] switched Takagi-
Sugeno models with an affine nonlinear consequent part are used to control switched 



nonlinear dynamical systems and in [5] it is proved that under some special assump-
tions such fuzzy model can approximate a particular class of nonlinear functions, 
nonlinear dynamic systems and nonlinear control systems. 

2 Fuzzy TSK System with Nonlinear Consequences 

We consider a fuzzy, single output, multi input model given by the rules 

 ��:	��	��	
�	��	
���	… 	���	���
�	���
	����	�	
�	�� = ����	, … , ��
, (1) 

where � = ��	, ��, … , ��
� is the vector of inputs, 
 = 1,… , � is the rule number, µij 
are membership functions, each defined by three parameters �̅�� , �̿�� , �̌�� , and yi are 
consequences ����
 = ����	, ��, … , ��
 = ��,	"�,	#�, $�,	% + ��,�"�,�#�, $�,�% + ⋯+ ��,()"�,()#�, $�,()%. (2) 

Parameters of the consequences are organized as follows: pi,j is a si,j –dimensional 
vector parameterizing nonlinear function φi,j while ai,j are scalars. For each rule we 
define its activation level as 

 +���
 = ∏ ���#��%��-	  (3) 

and denote 

 .��
 = ∑ +���
0�-	  (4) 

The model output is calculated from 

 ���
 = 	∑ 1)�2
3)45 ∑ 6+���
����
7.0�-	  (5) 

If we represent the vector of linear combination parameters as 

 � = 8�	,	, … , �	,(5 , ��,	, … , ��,(9 , … , �0,	, … , �0,(3:� (6) 

or 
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and we refer to the vector of activated consequences: 
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we get a short description of the system output: 

 ���
 = 	@�2
 ?��
�, (9) 



which stresses that the model is linearly parameterized by a. This important feature 
will be utilized during model training and makes such model attractive in adaptive 
control applications. 
If the same set of functions appears in each of the consequences, i.e. 

 A	 = A� = ⋯ = A0 = A,"�,�#�, $�,�% = "�#�, $�%, B = 1,2, … ,A (10) 

we may describe the model output as 
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and after accepting notation 
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we have another short output description 

 ���
 = D�EFH. (13) 

Similarly to the classical TSK model with linear consequences our model may be 
represented as a multi-layer neural network. In the first layer actual values of the 
membership functions are calculated, in the second the activation level for the each 

rule is calculated, in the third layer normalized activation strength +IJ ��
 = 1)�2
@�2
  of 

each rule is computed, in the fourth products +IJ�� are obtained and the final node per-
forms the summation � = ∑ +IJ��� . 

3 Model Training 

The task to construct a TSK fuzzy model can be divided into two steps: first we have 
to design the model structure – recognize relevant inputs, decide about membership 
functions, plan the rules and the consequences etc. While the structure is established 
we optimize the system parameters based on some numerical data representing the 
desired behavior of the model – this stage of modeling is usually called model train-
ing or tuning.  
In case of the proposed model with nonlinear consequences the model structure selec-
tion may be performed using any standard approach as placing membership functions 
on a grid, by clustering, or others [6]. The problem of nonlinear consequences selec-
tion is discussed separately. Here we concentrate on the model training methods.  



The proposed model parameters may be divided into three sets: parameters of mem-
bership functions (parameters µ), parameters that appear nonlinearly in the conse-
quences (parameters p) and parameters that are coefficients of linear combination in 
consequences (parameters a). The training data is collected in a M-dimensional target 
output vector K; and each entry �;� corresponds to an input vector �� while the model 
output for the same input is ��. The aim of training is to find model parameters mini-
mizing the RMSE 

 L = M	N∑ ��; � − ��
�N�-	 → A
�. (14) 

Calculation of optimal parameters a, for given parameters µ and p, is trivial since 
according to (9) a is the solution in the least squares sense to system of equations 

 K; = Φ�,			Φ = R
	@�25
 ?��	
⋮	@#2S% ?��N	
T ,			� = Φ\K;. (15) 

Unfortunately the target function J in (14) is heavily nonlinear function of parameters 
µ and p. It may be nonsmooth and possess many local minima. So we propose to ap-
ply evolutionary optimization to find optimal model parameters. We have experi-
mented with many evolutional optimization algorithms and finally we recommend 
PSO as well suitable for the problem. We use a well-known version as described in 
[8]. Parameters [µ , p] are coded as particles X. Each calculation of the fitting function 
for the given [µ , p] is done as follows: calculate Φ  and a from (15), next calculate J 
from (14).  
 
 

Fig. 1. Example function f1(x1,x2) Fig. 2. Example function f2(x1,x2) 



4 Examples 

The proposed model training approach was tested on several modeling problems.  
Example 1. Let us consider the following nonlinear functions defined for �	,�� ∈6−1,17 and plotted in fig. 1 and 2 

 �	��
 = �−�	� − ���
 ⋅ cos#13 ⋅ ��	 + ��
%, (16) 
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\��∣∣��∣∣ − 0.2
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and assume that we know the general form of these functions as 

 �	��
 = +��	, ��
 ⋅ cos�$ ⋅ ��	 + ��

, (18) 

 ����
 = +��	, ��
 ⋅ �
\��∣∣�	∣∣ − $	
 ⋅ �
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This assumption motivates the following choice of consequences in rule number i 

 y� = ��` + ��	 ⋅ �	 + ��� ⋅ �� + ��a ⋅ cos�$ ⋅ ��	 + ��

 (20) 

 y� = ��` + ��	 ⋅ �	 + ��� ⋅ �� + ��a ⋅ �
\��∣∣�	∣∣ − $	
 ⋅ �
\��∣∣��∣∣ − $�
 (21) 

The fuzzy model structure was designed by selecting membership functions 

 ���#��% = 	
	bcdefg)eh)e i9j)e (22) 

initialized on an uniform grid. We have tested the performance of modeling by: 
standard TSK model with linear consequences trained by ANFIS (adaptive-network-
based fuzzy inference system [9], the widely accepted standard for TSK systems 
training), TSK model with nonlinear consequences tuned by genetic algorithm (GA 
implemented as in Matlab Global Optimization Toolbox), TSK model with nonlinear 
consequences tuned by PSO. Results of modeling of function (14) in terms of average 
obtained model RMSE are presented in table 1. It may be observed, that modeling 
error for nonlinear models is lower regardless of model complexity, i.e. number of 
rules. PSO tuning results in a much more precise model – error is lower by 1 to 3 
orders of magnitude than for GA tuned model. 

Table 1. RMSE of linear model tuned by ANFIS and nonlinear models tuned by GA and PSO. 
Presented RMSE of PSO and GA tuned models is an average of 10 algorithm executions. 

Rules ANFIS GA PSO 
4 0.5643 0.5369 0.0271 
9 0.5611 0.5149 0.0017 
16 0.5281 0.4962 5.5e-4 
25 0.4845 0.1165 2.0e-5 
36 0.4071 0.0523 3.7e-5 
49 0.3266 0.0345 6.3e-5 



 
Additional experiments demenstrated that both GA and PSO benefit from estimating 
the value of nonlinear p parameters prior to optimizations. Such estimation was per-
formed by minimizing the value of the same RMSE objective with constant parame-
ters of membership functions, i.e. membership functions were initialized as a uniform 
grid and remained unchanged – only p parameters were tuned by GA or PSO for a 
low number of iterations. During the main optimization the search space for p was 
limited to the neighborhood of the estimated value. Such two stage optimization re-
sults in further model improvement, e.g. for a 4 rule model the average RMSE is 
0.029 for GA tuning and 0.006 for PSO. 
 
Example 2. The data presented in fig. 3 describes the q-axis flux component of a per-
manent magnet synchronous motor as function of current and rotor position. Accepta-
ble fuzzy model with affine consequences requires at least N=11 rules. It is visible 
that for currents bigger than 1A we observe flux oscillations with rotor position. The 
frequency of these oscillations is 6 times bigger than the rotor angular speed. Hence 
we propose nonlinear consequences 

 �� = ��	�	 + ����� + ��` + ��a�
��6�	
 + ��lmn��6�	
, 
 = 1…� (23) 

where x1 is a rotor position and x2 is q-axis current. With this it was possible to reduce 
the number of rules and the model with 4 rules only was equivalent to 11 rules model 
with linear consequences, as it is demonstrated in table 2. Presented error is calculated 
as RMSE for the whole set of collected data (80 000 points), while model training 
was based on points equal to local average of measurements over a grid of 900 points. 
 
 

 
 

Fig. 3. The q-axis motor flux (Ψq [Wb]) 
as function of motor current (iq [A]) and 
rotor position (θ [rad]). The data col-
lected from the flux observer. 

Fig. 4. Fuzzy model output corresponding 
to the data from fig. 3. The model with 4 
rules and consequences (23) trained by 
PSO. 

 

0

2

4

6

-2

0

2

-0.1

-0.05

0

0.05

0.1

tetaiq

fi 
q



Table 2. Comparison of fuzzy models. The training was based on 900 local average values and 
test error was calculated using all 80 000 points from fig. 3. 

 11 rules with affine con-
sequences trained by 
ANFIS 

4 rules with nonlinear 
consequences (23) trained 
by PSO 

Training error 0.0056 0.0060 
Test error 0.0079 0.0070 

5 Nonlinear consequences construction 

The obvious problem we have to solve constructing a TSK model with nonlinear con-
sequences is how to select and parameterize nonlinear functions that appear in the 
consequences. Usually, in practical problems, the expert knowledge is sufficient to 
propose the consequences, as it was demonstrated in example 2. We may also propose 
a more formal approach. 
Additive correction approach 
If we may assume (from an expert knowledge for example) what kind of nonlineari-
ties may be present in the system model we add these nonlinearities to the conse-
quences. Finally we get the consequence for rule number i 

 �� = ��` + ��	�	 +⋯+	����� + ��\��, $
. (24) 

The first part of (24) is a standard affine function as in classical TSK model and the 
last one is selected to cope with expected nonlinearities. This approach is especially 
useful if we expect discontinuities in the data – for example friction is discontinuous 
at zero velocity. Consequents similar to (24) were applied in all examples presented 
above and prove to be effective. 
 
Constant coefficient approach 
Let us consider a function �: �� → � to be modelled and assume that it may be repre-
sented on a compact set A as 

 ���
 = +��
\��, $
. (25) 

Assume that \��, $
 is known, although the actual values of constant parameters p 
may be unknown. Assume that A is covered by a grid defined by selection of points 
for each axis: 

 �o,` <	�o,	 < ⋯ < �o,�q , r = 1,… , �. (26) 

We denote the middle points of the grid by 

 �̅o,� =	 2q,es2q,ef5� ,			B = 1, … , �o	,			r = 1,… , � (27) 

and define the rules 



��5,…,�t: ��	#�		
�	�u�v	�̅	,�5%	���	… ���	#��	
�	�u�v	�̅�,�t%	����	�	
�	 ��5,…,�t = ��5,…,�t\��, $
. (28) 

Of course the initial guess for ��5,…,�t is #�̅�5,…,�t%,				�̅�5,…,�t = ��̅	,�5 , … , �̅�,�t
 , or the 
average value of the data representing +��
 in the part of the grid around �̅�5,…,�t, if 
such information is available. 
 
Linear approximation approach 
Assuming that +��
 is sufficiently smooth, it may be approximated by 

+��
 ≈ +#�̅�5,…,�t% +x yz+z��{2̅),e) ��� −
�
�-	 �̅�,�)


= +#�̅�5,…,�t% −x yz+z��{2̅),e)
�
�-	 �̅�,�) +x yz+z��{2̅),e) ��

�
�-	  

(29) 

what motivates the rules ��5,…,�t: ��	#�		
�	�u�v	�̅	,�5%	���	… ���	#��	
�	�u�v	�̅�,�t%	����	�	
�	 ��5,…,�t = �`,�5,…,�t+�	,�5,…,�t�	\��, $
 + ⋯+ ��,�5,…,�t��\��, $
 (30) 

 
Example 3. Proposed methods of constructing rule consequences were applied to 
modeling of example function (16). The tested model consisted of 4 or 9 rules with 
consequences defined as: 

• standard affine: 

 �� = ��` + ��	�	 + ����� (31) 

• nonlinear - consisting of linear part and added nonlinear function: 

 �� = ��` + ��	�	 + ����� + ��amn�#$ ∙ ��	 + ��
% (32) 

• nonlinear with constant coefficients: 

 �� = ��mn�#$ ∙ ��	 + ��
% (33) 

• nonlinear constructed according to the linear approximation approach: 

 �� = ��` + ��	�	mn�#$ ∙ ��	 + ��
% + �����mn�#$ ∙ ��	 + ��
% (34) 

Model with linear consequences was trained by ANFIS, while nonlinear models were 
trained by PSO. The objective of training was to minimize the RMSE model error. 
Nonlinear models - gained much better accuracy than the linear model as is demon-



strated in table 3 and shown in figures 5 and 6 presenting modeling error of a sample 
linear and nonlinear model. 
To illustrate the complexity of linear model required to match the accuracy of nonlin-
ear models we continue constructing of linear models for as many as 144 rules trained 
by ANFIS. The resulting model’s RMSE is similar to error of a 4-rule nonlinear mod-
el. 

Table 3. RMSE of linear (ANFIS) and nonlinear models: PSO additive (eq. (32)), PSO cons-
tant (33), PSO lin.apx. (34) for 4 and 9 rules. Higher number of rules modeled for comparison 
for linear model only. Presented RMSE of PSO tuned models is an average of 10 algorithm 

executions. 

Rules ANFIS PSO additive PSO constant PSO lin.apx. 
4 0.5643 0.0271 0.0461 0.0024 
9 0.5611 0.0017 0.0014 0.0003 
81 0.1921 - -  
100 0.0693 - - - 
144 0.0254 - - - 

 

Fig. 5. Modeling error of function (16) for a 
144-rule ANFIS trained model with linear 

consequents. 

Fig. 6. Modeling error of function (16) for a 
9-rule PSO trained model with nonlinear 

consequents given by eq. (34) 

6 Conclusions 

We propose to generalize TSK fuzzy model applying nonlinear functions in the rule 
consequences. We provide the model description and parameterization and discus the 
problem of model training and we recommend PSO for tuning parameters in member-
ship functions and in nonlinear part of a rule consequence. We also propose some 
more or less formalized approach to nonlinear consequence selection and construc-
tion. Several examples demonstrate the main features of the proposed fuzzy models. 



The proposed approach allows to reduce the model complexity preserving the desired 
accuracy. A model with smaller number of rules is simpler for real time application 
and easier interpretable. Nonlinear consequences enable modeling of function imper-
fectly approximated by standard TSK models, for example discontinuous functions 
[10]. As the constructed models are linear in some of parameters they may be effi-
ciently utilized in adaptive control of dynamical systems, as it was proposed for ex-
ample in [11]. It is also important that the proposed model may be described as a neu-
ral network and so NN-training techniques may be utilized for the model tuning. 
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