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TSK Fuzzy Modeling with Nonlinear Consequences

Jacek KabZiski, Jarostaw Kacerka

Institute of Automatic Control, Lodz University oE€hnology
{j acek. kabzi nski , jaroslaw kacerka} @. | odz. pl

Abstract. We propose to generalize TSK fuzzy model applyioglinear func-
tions in the rule consequences. We provide the hbekeription and parame-
terization and discus the problem of model trairang we recommend PSO for
tuning parameters in membership functions and imlinear part of a rule con-
sequence. We also propose some more or less faadapproach to nonlinear
consequence selection and construction. Severahmga demonstrate the
main features of the proposed fuzzy models. The@gsed approach reduces
the average obtained model Root Mean Square ErroSgRMith regard to the
linear fuzzy model, as well that it allows to redube model complexity pre-
serving the desired accuracy.
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1 Introduction

Among various fuzzy modeling techniques the apgrqaoposed by Takagi, Sugeno
and Kang [1, 2], so called TSK model, remains oinith@® most popular and effective.
The standard TSK model employs affine functionsansequences of fuzzy rules. So
the idea of modeling is based on local linear medeiminating if the rule activation
strength is high. The model possesses the univapgabximation property [3] but in
many practical problems the number of rules to@ahithe desired accuracy is really
high. Motivated by many experiences from modelingchatronic systems (see ex-
ample 2 below) we claim that it is possible to e local nonlinear models in many
practical applications. Having some knowledge om mlature of the modeled phe-
nomenon we may foresee nonlinear functions thatildheppear in the model, even if
we are not sure about the exact parameters of fhasgons.

In this contribution we propose to generalize TSKdel by accepting nonlinear
functions of model inputs in fuzzy rule consequend&’e propose a formal model
description and parameterization. Next we consttier problem of model training
from the numerical data, which is more difficulathin the standard case. We also
propose some formal methods to develop nonlineasemuences. The aim of the
proposed modification is to reduce the model coriplereserving the desired accu-
racy, and we demonstrate on several exampleshthgit really happens.

The idea of using nonlinear functions in fuzzy rasequences was already men-
tioned in literature, but only particular cases aveonsidered. In [4] switched Takagi-
Sugeno models with an affine nonlinear consequaritgre used to control switched



nonlinear dynamical systems and in [5] it is protleat under some special assump-
tions such fuzzy model can approximate a particalass of nonlinear functions,
nonlinear dynamic systems and nonlinear contraksgys.

2 Fuzzy TSK System with Nonlinear Consequences

We consider a fuzzy, single output, multi input rebgiven by the rules
R;: IF (xqis wp)and ... and (x,is pi) THEN v is y; = f;(xq, .., X)) (1)

wherex = (xy,x,, ..., x,)T is the vector of inputs,= 1, ..., R is the rule numbeny;
are membership functions, each defined by threarpetersi;;, ii;;, fi;; , andy; are
consequences

fi() = fi(x1, Xz 0, Xn) = 31041 (%, P11) + Q12052 (,0i2) + - + @)
ai,mi(pi,mi (x' pi,‘mi)-
Parameters of the consequences are organizedi@ssop;; is as; —dimensional
vector parameterizing nonlinear functigr) while a; are scalars. For each rule we
define its activation level as

a;(x) = H’}=1 Ilij(xj) €))
and denote
o(x) =X a;i(x) (4)
The model output is calculated from
@) = s B (O fi ()] 5)
=171

If we represent the vector of linear combinatiorapaeters as

T
a= [alyl, ey alyml, az'l, ey az'mz, ey aer, ey aR'mR] (6)

or

T al
C_l,: = [ai_l, ...,ai'mi] , a= [_ :| (7)
ag

and we refer to the vector of activated consequence
v(x) = ai(x)[<.0i,1(9€: pi,l)' ---'¢i,mi(xﬁpi,mi)]ﬁv(x) = [v1 (%), ..., vr(X)], 8)

we get a short description of the system output:

y() = -=v(0a, ©)



which stresses that the model is linearly paranztérbya. This important feature
will be utilized during model training and makeskumodel attractive in adaptive
control applications.

If the same set of functions appears in each oftimsequences, i.e.

m; =my, =+ =Mmg=m, (pi,]-(x,pi_j) = (pj(x,p]-),j =12,..,m (20)

we may describe the model output as

) _ B a,(x)
Y = =l Ep), o pI@, ]| (12)
ag(x)
and after accepting notation
a1 0 Gga
2l =[p1(,p)  9200p2) 0 @)l A= | l
Qim0 Arm (12)

ag(x) o)
we have another short output description
y() = 2" AS. (13)

Similarly to the classical TSK model with linearnsequences our model may be
represented as a multi-layer neural network. Infitet layer actual values of the
membership functions are calculated, in the sed¢badactivation level for the each
ai(x)
each rule is computed, in the fourth produtt§ are obtained and the final node per-
forms the summatiop = ¥; &, f;.

rule is calculated, in the third layer normalizettiation strengthx,(x) = of

3 Mode Training

The task to construct a TSK fuzzy model can beddidiinto two steps: first we have
to design the model structure — recognize releugmits, decide about membership
functions, plan the rules and the consequencedMhide the structure is established
we optimize the system parameters based on somerinaindata representing the
desired behavior of the model — this stage of mindeak usually called model train-
ing or tuning.

In case of the proposed model with nonlinear comsraces the model structure selec-
tion may be performed using any standard approagiaeing membership functions
on a grid, by clustering, or others [6]. The praoblef nonlinear consequences selec-
tion is discussed separately. Here we concentratheomodel training methods.



The proposed model parameters may be divided maetsets: parameters of mem-
bership functions (parameterg§, parameters that appear nonlinearly in the conse-
quences (parametepy and parameters that are coefficients of lineanlwoation in
consequences (parametajsThe training data is collected in a M-dimensicaaget
output vectorY and each entry’ corresponds to an input vector while the model
output for the same input i&. The aim of training is to find model parameteiigim

mizing the RMSE
J= [E5M.G - y)? - min (14)

Calculation of optimal parametess for given parametergs andp, is trivial since
according to (93 is the solution in the least squares sense temsysf equations

1 1
el G

Y =da, &= : , a=®\Y. (15)

v

Unfortunately the target functiahin (14) is heavily nonlinear function of paramster
w andp. It may be nonsmooth and possess many local mirfmave propose to ap-
ply evolutionary optimization to find optimal modpkhrameters. We have experi-
mented with many evolutional optimization algorithrand finally we recommend
PSO as well suitable for the problem. We use a-kredwn version as described in
[8]. Parameters, p] are coded as particles X. Each calculation offittiag function
for the given [t , p] is done as follows: calculat® anda from (15), next calculaté
from (14).

Fig. 1. Example functior(x;,%,) Fig. 2. Example functior,(x;,%,)



4 Examples

The proposed model training approach was testestogral modeling problems.
Example 1 Let us consider the following nonlinear functiodsfined forx; x, €
[—1,1] and plotted in fig. 1 and 2

fix) = (—x2 —x2) - cos(13 (x + xz)), (16)
fo(x) = (—x2 — x2) - sign(lx;| — 0.2) - sign(|x,| — 0.2) a7
and assume that we know the general form of thasaibns as
f[i(x) = axy,x3) - cos(p - (x1 + x2)), (18)
fa(x) = a(xy, x3) - sign(lxy| — p1) - sign(lxz| — p2). (19)

This assumption motivates the following choice @igequences in rule number
Vi =@+ Qg - Xq + A - X5 + a3 - cos(p - (X + x3)) (20)
Vi = Qio + Qg - Xg + Az - Xp + @iz - sign(lxg | — py) - sign(lxz| —p2) (21)
The fuzzy model structure was designed by selectiambership functions

W= @)
w(75)
initialized on an uniform grid. We have tested therformance of modeling by:
standard TSK model with linear consequences traineANFIS (adaptive-network-
based fuzzy inference system [9], the widely ac@ptandard for TSK systems
training), TSK model with nonlinear consequenca®etlby genetic algorithm (GA
implemented as in Matlab Global Optimization Too{pol SK model with nonlinear
consequences tuned by PSO. Results of modelingnafibn (14) in terms of average
obtained model RMSE are presented in table 1. i b observed, that modeling
error for nonlinear models is lower regardless afdel complexity, i.e. number of
rules. PSO tuning results in a much more precisdeine error is lower by 1 to 3
orders of magnitude than for GA tuned model.

wij(x) =

Table 1. RMSE of linear model tuned by ANFIS and nonlineadeis tuned by GA and PSO.
Presented RMSE of PSO and GA tuned models is aagwef 10 algorithm executions.

Rules ANFIS GA PSO

4 0.5643 0.5369 0.0271
9 0.5611 0.5149 0.0017
16 0.5281 0.4962 5.5e-4
25 0.4845 0.1165 2.0e-5
36 0.4071 0.0523 3.7e-5
49 0.3266 0.0345 6.3e-5




Additional experiments demenstrated that both GA B8O benefit from estimating
the value of nonlinegp parameters prior to optimizations. Such estimatias per-
formed by minimizing the value of the same RMSEeactjye with constant parame-
ters of membership functions, i.e. membership fionstwere initialized as a uniform
grid and remained unchanged — oplparameters were tuned by GA or PSO for a
low number of iterations. During the main optimipat the search space fprwas
limited to the neighborhood of the estimated valBech two stage optimization re-
sults in further model improvement, e.g. for a #ermodel the average RMSE is
0.029 for GA tuning and 0.006 for PSO.

Example 2 The data presented in fig. 3 describes the gfaxiscomponent of a per-
manent magnet synchronous motor as function okatiand rotor position. Accepta-
ble fuzzy model with affine consequences requiteleast N=11 rules. It is visible
that for currents bigger than 1A we observe flugiltetions with rotor position. The
frequency of these oscillations is 6 times bigdmmtthe rotor angular speed. Hence
we propose nonlinear consequences

Vi = Qi Xq + QppXy + @i + aizsin(6x,) + ajacos(6x,),i = 1...N (23)

wherex, is a rotor position ang, is g-axis current. With this it was possible tduee
the number of rules and the model with 4 rules avdyg equivalent to 11 rules model
with linear consequences, as it is demonstratéabie 2. Presented error is calculated
as RMSE for the whole set of collected data (80 poibits), while model training
was based on points equal to local average of measunts over a grid of 900 points.

K] teta

iq 0 teta

Fig. 3. The g-axis motor flux¥, [Wb]) Fig. 4. Fuzzy model output corresponding
as function of motor curreniy([A]) and to the data from fig. 3. The model with 4
rotor position ¢ [rad]). The data col- rules and consequences (23) trained by
lected from the flux observer. PSO.



Table 2. Comparison of fuzzy models. The training was base€f00 local average values and
test error was calculated using all 80 000 poiramffig. 3.

11 rules with affine cont 4 rules with nonlinea
sequences trained Ryconsequences (23) trained

ANFIS by PSO
Training error 0.0056 0.0060
Test error 0.0079 0.0070

5 Nonlinear consequences construction

The obvious problem we have to solve constructiig®& model with nonlinear con-
sequences is how to select and parameterize nanlfoactions that appear in the
consequences. Usually, in practical problems, ttper knowledge is sufficient to
propose the consequences, as it was demonstragednnple 2. We may also propose
a more formal approach.

Additive correction approach

If we may assume (from an expert knowledge for gdajnwhat kind of nonlineari-
ties may be present in the system model we adck theslinearities to the conse-
quences. Finally we get the consequence for rulebeui

Vi = Qg + @ Xg 0t apx, + a;g(x, p). (24)

The first part of (24) is a standard affine funotias in classical TSK model and the
last one is selected to cope with expected noniithiesa This approach is especially
useful if we expect discontinuities in the dateor éxample friction is discontinuous
at zero velocity. Consequents similar to (24) wagpelied in all examples presented
above and prove to be effective.

Constant coefficient approach
Let us consider a functioft R — R to be modelled and assume that it may be repre-
sented on a compact gets

fG) = a(x)g(x,p). (25)

Assume thatg(x, p) is known, although the actual values of constamameterg
may be unknown. Assume thatis covered by a grid defined by selection of pint
for each axis:

Ao < Xpp < <Xk =1,..,1. (26)

We denote the middle points of the grid by

— Xk Xkj-1

Xpj = - ,j=1,..n, k=1,..,n (27)

and define the rules



Rj, ot IF (xl is near fl,jl) and ...and (xn is near fn,jn) THEN yis
(28)
Vitrondn = ajl,...,jng(x' D).
Of course the initial guess fas, _; is (%), %, jn = Fojys s Xnj,) » OF the

average value of the data representnﬁg) in the part of the grid aroung, ; , if
such information is available.

Linear approximation approach
Assuming thatr(x) is sufficiently smooth, it may be approximated by

a() ~ al@, ;) + Z = @-ap
i xljl
) da (29)
= C((le_____jn) - ; a_xl| ’ Z axl ) Xi
what motivates the rules
Rj, ot IF (xl is near fl,jl) and ...and (xn is near fn,jn) THEN yis (30)

Yivoin = Q0 j1jn T jjin¥19 (D) + o+ Ay X0 g (X, D)

Example 3 Proposed methods of constructing rule conseqseneze applied to
modeling of example function (16). The tested marwisisted of 4 or 9 rules with
consequences defined as:

+ standard affine:
Yi = Qjo T ai Xyt a;2X; (31)
* nonlinear - consisting of linear part and addedinear function:
Vi = Qjp T Qi1 X1 T QipXp + ai3cos(p (X + xz)) (32)
« nonlinear with constant coefficients:
yi = acos(p - (x1 + %)) (33)
» nonlinear constructed according to the linear agpration approach:
Vi = Qi t ailxlcos(p “(xy + xz)) + aizxzcos(p “(xg + xz)) (34)

Model with linear consequences was trained by ANRIile nonlinear models were
trained by PSO. The objective of training was tmimize the RMSE model error.
Nonlinear models - gained much better accuracy tharinear model as is demon-



strated in table 3 and shown in figures 5 and 6gmting modeling error of a sample
linear and nonlinear model.
To illustrate the complexity of linear model reqdrto match the accuracy of nonlin-
ear models we continue constructing of linear medel as many as 144 rules trained
by ANFIS. The resulting model's RMSE is similardoor of a 4-rule nonlinear mod-

el.

Table 3. RMSE of linear (ANFIS) and nonlinear models: PS@itae (eq. (32)), PSO cons-
tant (33), PSO lin.apx. (34) for 4 and 9 rules.l¢ignumber of rules modeled for comparison
for linear model only. Presented RMSE of PSO tunedets is an average of 10 algorithm

executions.
Rules ANFIS PSO additive] PSO constant ~ PSO lin.apx.
4 0.5643 0.0271 0.0461 0.0024
9 0.5611 0.0017 0.0014 0.0003

81 0.1921 - -

100 0.0693 - - -

144 0.0254 - - -
is‘rnn:\ . zh U:‘ A :
5; uw:' ‘ [ y EARN 4 A
T s ¥ - :

A L ‘

Fig. 5. Modeling error of function (16) for a
144-rule ANFIS trained model with linear

consequents.

6 Conclusions

Fig. 6. Modeling error of function (16) for a
9-rule PSO trained model with nonlinear

consequents given by eq. (34)

We propose to generalize TSK fuzzy model applyinglinear functions in the rule
consequences. We provide the model descriptiorparameterization and discus the
problem of model training and we recommend PSQubing parameters in member-
ship functions and in nonlinear part of a rule @pgence. We also propose some
more or less formalized approach to nonlinear ogusece selection and construc-
tion. Several examples demonstrate the main featfrthe proposed fuzzy models.



The proposed approach allows to reduce the modeplexity preserving the desired
accuracy. A model with smaller number of rulesimpder for real time application
and easier interpretable. Nonlinear consequencasiemodeling of function imper-
fectly approximated by standard TSK models, fornepi® discontinuous functions
[10]. As the constructed models are linear in sawhparameters they may be effi-
ciently utilized in adaptive control of dynamicalstems, as it was proposed for ex-
ample in [11]. It is also important that the propdsnodel may be described as a neu-
ral network and so NN-training techniques may likzat for the model tuning.
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