Application of Supervised Self Organising Models for Wheat Yield Prediction

Abstract : The management of wheat yield behavior in agricultural areas is a very important task because it influences and specifies the wheat yield production. An efficient knowledge-based approach utilizing an efficient Machine Learning algorithm for characterizing wheat yield behavior is presented in this research work. The novelty of the method is based on the use of Supervised Self Organizing Maps to handle existent sensor information by using a supervised learning algorithm so as to assess measurement data and update initial knowledge. The advent of precision farming generates data which, because of their type and complexity, are not efficiently analyzed by traditional methods. The Supervised Self Organizing Maps have been proved from the literature efficient and flexible to analyze sensor information and by using the appropriate learning algorithms can update the initial knowledge. The Self Organizing models that are developed consisted of input nodes representing the main factors in wheat crop production such as biomass indicators, Organic Carbon (OC), pH, Mg, Total N, Ca, Cation Exchange Capacity (CEC), Moisture Content (MC) and the output weights represented the class labels corresponding to the predicted wheat yield.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.556-565, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_55〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01391358
Contributeur : Hal Ifip <>
Soumis le : jeudi 3 novembre 2016 - 11:07:10
Dernière modification le : vendredi 1 décembre 2017 - 01:16:35
Document(s) archivé(s) le : samedi 4 février 2017 - 13:36:29

Fichier

978-3-662-44654-6_55_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Xanthoula Pantazi, Dimitrios Moshou, Abdul Mouazen, Boyan Kuang, Thomas Alexandridis. Application of Supervised Self Organising Models for Wheat Yield Prediction. Lazaros Iliadis; Ilias Maglogiannis; Harris Papadopoulos. 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. Springer, IFIP Advances in Information and Communication Technology, AICT-436, pp.556-565, 2014, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-662-44654-6_55〉. 〈hal-01391358〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

21