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Abstract.  In this study, we use a specialized coastal monitoring system for the 
test case of Faro beach (Portugal), and generate a database consisted of variance 
coastal images. The images are elaborated in terms of an empirical image 
thresholding procedure and the Chebyshev polynomials. The resulting 
polynomial coefficients constitute the input data, while the resulting thresholds 
the output data. We, then, use the above data set to train a radial basis function 
network structure with the aid of input-output fuzzy clustering and a steepest 
descent approach. The implementation of the RBF network leads to an effective 
detection and extraction of the shoreline of the beach under consideration. 

Keywords: Coastal morphodynamics, remote sensing, RBF neural networks, 
fuzzy clustering, steepest descent. 

1 Introduction 

Monitoring of the shoreline position has become an issue of urgency given the high 
socio-economic value and population density of the coastal zone [1, 2], the increasing 
erosion as well as the projected sea-level rise. Beach morphology is known to change 
in different spatial and temporal scales, a fact that requires intensive monitoring 
schemes while the energetic conditions make non-intrusive techniques very attractive 
[3, 4]. As a result, the application of coastal video monitoring has been increased 
during the last three decades [5, 6] allowing non-intrusive, continuous measurements 
at temporal and spatial scales and resolutions for which in situ data collection would 
demand much greater than acceptable inputs of personnel, equipment, and cost. 
However, despite the application of coastal video monitoring systems for more than 
two decades still, developing a universal and robust automatic shoreline detection 
procedure remains a challenge, due to the variety of intra-annual environmental, 
hydrodynamic and morphological conditions at the coastal zone [6]. Against the 
foregoing background [7, 8], the present contribution aims to build a systematic 
methodology for coastal shoreline detection using radial basis function (RBF) 
artificial neural networks. 

RBF networks have been exercised as efficient black-box techniques that have 
been implemented in a wide range of applications [9-14]. The training process is 
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based on estimating three kinds of parameters: the neuron centers and widths, and the 
connecting weights between neurons. The estimation of the centers is carried out 
through cluster analysis; the corresponding widths are evaluated in terms of the above 
centers, and finally the connection weights using least squares or gradient descent.  

In this paper, we present an automated methodology for the shoreline extraction 
from coastal grayscale variance images. The proposed methodology encompasses 
three modules. The first module performs an empirical image thresholding process. 
The second module employs the Chebyshev polynomials [15-16] to approximate the 
histograms of the resulting images. Finally, the third module applies an RBF network, 
which is trained in terms of input-output fuzzy clustering and a steepest descent 
approach based on Armijo’s rule [17]. The result is an integrated system able to 
accurately detect and extract the shorelines.   

The rest of the paper is synthesized as follows: Section 2 describes the location of 
interest and the monitoring system. Section 3 presents the proposed methodology in 
details. The experimental results are provided in Section 4. Finally, the paper 
concludes in Section 5.  

2   Study Area and Monitoring System 

The study area is the Faro Beach (Praia de Faro) located along the central and eastern 
parts of the Ancão Peninsula, in the westernmost sector of the Ria Formosa barrier 
island system in Portugal.  
Tides in the area are semi-diurnal, with average ranges of 2.8 meters (m) for spring 
tides and 1.3 m for neap tides although a maximum range of 3.5 m can be reached 
[18]. Faro Beach is a ‘reflective’ beach [4] with beach-face slopes typically over 10% 
and varying from 6% to 15%, and a tendency to decrease eastwards, where a ‘low tide 
terrace’ beach state is found [18]. Beach sediments are medium to very coarse sands 
with d50~0.5 mm and d90~2 mm.  
Coastal imagery was provided by a coastal video [4] consisting of two Mobotix M22, 
3.1 megapixel (2048 x 1536 resolution), Internet Protocol (IP) cameras, installed on a 
metallic structure, placed on the roof of a restaurant in Faro Beach, and connected to a 
PC. The elevation of the centre of view (COV) is around 20 m above mean sea level 
(MSL).  
The image acquisition took place at 1 Hz, at hourly 10 min bursts, during daylight. 
After each 10 minutes image acquisition set, the system was scheduled to run 
processing scripts which generate the ‘primary products’, i.e. snapshot images, time 
averaged (TIMEX) images, variance images, and timestack images [5]. 

 



                               
 

Fig. 1. (a) Typical SIGMA image and (b) the corresponding histogram. 

3   The Proposed Methodology 

In this study, we obtain grayscale variance images of the coastal line, commonly 
called SIGMA images [4, 18]. These images represent the sum of the absolute pixel 
intensity differences between consecutive images and can be considered as 
‘accumulated motion images’. Using the above monitoring system, we generated 
1600 SIGMA images for various angle view positions of the camera. Fig. 1(a) depicts 
a typical SIGMA image, where high intensity values are related to high wave-
breaking and swash activity. The corresponding normalized histogram is given in Fig. 
1(b).  

The proposed method consists of three steps aiming towards developing a fully 
automated methodology able to exhibit accurate shoreline detection and extraction. 
The first two steps generate the input data and the output data, and the third one uses 
the above data to train the RBF network.  

3.1 Histogram Approximation Using Chebyshev Polynomials  

In this step we generate the input data used by the RBF network. Specifically, we 
attempt to approximate the histogram of each SIGMA image using Chebyshev 
polynomials, where each polynomial coefficient defines one and only one dimension 
of the input space of the RBF network. Thus, the number of polynomial coefficients 
defines the dimension of the network’s input space. This fact justifies our choice to 
use the Chebyshev polynomials because they constitute orthogonal polynomials and 
they possess and inherent ability to exhibit high approximation accuracy by utilizing a 
small number of coefficients. Eventually, the input space dimension is kept within 
reasonable levels. According to Weierstrass’s theorem [16] every continuous function 

( )f x  on a closed interval can be approximated as closely as desired by a polynomial 
function 
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where ( )f x  is the approximation of ( )f x , r  is the  polynomial’s order, 
(1 )pc p r≤ ≤ are the polynomial coefficients, and ( )pT x  is a continuous polynomial 

of order p . The order r  is chosen as to approximate the following error function, 

{ }min max ( ) ( )errorJ f x f x= −                                            (2) 

In what follows, we shall consider one-dimensional space, which is also our case 
since the histogram distributions of the SIGMA images are one-dimensional.  

The Chebyshev polynomial of order r  can be written as follows [16], 
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with cos .x θ=  The Chebyshev polynomials are orthogonal in [ ]1, 1−  with respect 
to the subsequent weighting function, 
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The orthogonality is defined according the to the following relationship, 
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       where ⋅  stands for the inner product and,  
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The polynomial coefficients of the function expansion in (1) can be written as, 
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with 1, 2,..., .p r=  The orthogonality implies that the polynomial functions do not 
overlap with each other. It thus appears that each coefficient kc  can be adjusted 
without causing any side effects to the rest of coefficients, meaning that they are 
independent each other. This is the property we wanted to obtain in the first place 
because, in our approach, the polynomial coefficients define the input space 
dimensions.  

Since our data are discrete, the discretization of the above inner product relationship 
can be obtained by implementing the Forsythe's algorithm [15]. This method assumes a 
set { }

1
;

N
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=

of input-output data with [ ]1, 1kx ∈ −  and minimizes the error function 
in eq. (2) by using a monic polynomial of the form, 
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 To this end, the Forsythe's algorithm modifies the equation (7) and states that the 
best fitting of the available discrete data set is obtained if the polynomial coefficients 
are calculated according to the subsequent formula, 
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3.2  Image Thresholding 
 
In this step, we generate the output data. To accomplish this task, we employ the 

thresholding process developed in [4]. The basic issue of this approach is to normalize 
the pixel intensities as follows: 
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where ,i jI is the pixel original intensity, where 1 i M≤ ≤ and 1 j N≤ ≤  indicate 
horizontal and vertical pixel dimensions, respectively, of an image of size M N×  
pixels. The quantity max

jI corresponds to the smoothed alongshore pixel intensity 
maxima vector. Given that a standard region of interest was considered, the only input 

parameter for the shoreline detection model was the pixel intensity threshold t̂hrI , 
which has been shown to be related to the pixel intensity histograms. The interested 
reader can find a detailed presentation of the thresholding approach in [4]. 

 

3.3  Training Process of the RBF Network 
Based on the above process, the data set to train the network is formulated as 

follows: 
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where Q  is the number of the training data, r  is the order of the Chebyshev 
polynomial which coincides with the input space dimension and is the same for all 
images, and kjc (1 )j r≤ ≤  are the polynomial coefficients. Notice that 1600Q < . In 
order to train the RBF network we must determine effective input-output relationships, 
which are provided by an optimal set of values of the network’s parameters. The most 
crucial issue is the determination of the radial basis function centers. Fuzzy cluster 



analysis has been intensively involved in deciding appropriate values for those 
parameters. In this paper, we employ the algorithm developed by Pedrycz in [19], 
which is based on the implementation of the fuzzy c-means. The algorithm performs a 
separate fuzzy clustering in the output space. The number of clusters defines the 
number of contexts in the input space. The input data belonging to the same context 
correspond to the output data that belong to the same cluster in the output space. Then, 
a separate conditional cluster analysis is implemented with respect to each context, 
where all contexts are partitioned into the same number of clusters. In both clustering 
schemes the fuzziness parameter was selected to be equal to 2. To this end, the form of 
the radial basis function is, 
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where n  is the number of hidden nodes (i.e. radial basis functions), and r
i∈ℜv  

the center of the i-th basis function. The interested reader can find a detailed 
presentation of this algorithm in [19]. The estimated network’s output is,  
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with iw  being the connection weight of the i-th hidden node. Notice that the above 
basis function does not use any width parameter, since this parameter has been 
absorbed by the radial basis function form.  

The connection weights are calculated by a steepest descent approach, which is 
based on Armijo’s rule [17]. The objective is to minimize the network’s square error, 
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The partial derivatives in (21) are,  
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The parameter ( )tα  in (16) is:         ( )t µα β=                                                           (19)                                                                                                                               

where (0,1)β ∈ . The parameter µ  is the smallest positive integer such that, 
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with (0,1)ε ∈ .  

4   Experimental Study 

The data set consists of 1600 SIGMA images and therefore the available data set 
includes 1600L =  data. The first experiment concerns the approximation of the image 
histograms by the Chebyshev polynomials.  

 
 

Fig. 2. Histogram approximations using Chebyshev polynomials with degrees equal to: (a) 
20r =  and (b) 6r = . 

Table 1.  Mean RMSE values and the corresponding standard deviations of the histogram 
approximations for various polynomial degrees. 

Polynomial Degree RMSE±Standard Deviation 
6 0.4354± 0.1072 

10 0.4035±0.1138 
14 0.3899±0.0933 
18 0.3746±0.0866 

 

To perform the experiment we used 200N = discrete intensity levels. Thus, for 
each image, the Chebyshev polynomials were used to fit 200 image data. The 
approximation accuracy was evaluated in terms of the root mean square error, 
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where ˆ( )lfr I  is the original histogram frequency function and  ˆ( )lfr I the 
approximated  one, which is provided by the expansion in eq. (1).  Fig. 2 depicts the 
approximations of two different images with two different polynomial degrees. Notice 

(a) (b) 



that as the number of coefficients (i.e. the polynomial degree) increases so does the 
approximation accuracy. This fact is strongly supported by Table 1, where the mean 
values of the RMSE along with the respective standard deviations for all the 1600 
SIGMA images are reported.  

 

          
 

Fig. 3. Shoreline extraction for two different SIGMA images taken from Faro beach using the 
proposed RBF neural network and the Otsu’s method [18]. 

Table 2. Comparative results in terms of the PI. 

 No. of 
Hidden Nodes 

Training  
data 

Testing  
Data 

Proposed 
Method 

6 0.0993±0.0036 0.0989±0.0300 
8 0.0963±0.0036 0.0967±0.0303 

10 0.0907±0.0036 0.0946±0.0308 
12 0.0863±0.0035 0.0914±0.0312 

Otsu’s 
Model  0.1631±0.01353 

 
However, in Table 1, the differences are not too large.  Based on the last remark, 

and since the number of polynomial coefficients define the dimensionality of the 
network’s, which must be kept within reasonable levels, we choose to use 
approximations obtained by the Chebyshev polynomials of degree equal to 6r = . 
Therefore, in this experimental case, the input space dimension of the RBF network is 
equal to 7. The performance index (PI) used to evaluate the network is, 

SEPI J Q=                                                        (22) 

To train the network we divided the available 1600 data into 960Q =  training data 
(i.e. 60%), while the rest 640 (i.e. 40%) as testing data. In addition, the proposed 
method is compared to the well-known Otsu’s image thresholding algorithm [20]. Fig. 
3 illustrates the shoreline extractions of two different SIGMA images obtained by the 
proposed method and Otsu’s algorithm. To obtain this figure we used a RBF network 
with 8n =  hidden nodes. According to this figure our approach significantly 
outperformed the other method. This result is strongly evident in Table 2, which 



presents a simulation comparison in terms of the mean values of the PI and the 
corresponding standard deviations. 

             
Fig. 4. Shoreline extraction for two different SIGMA images taken from Ammoudara beach 

using the proposed RBF neural network and the Otsu’s method. 

Table 3. Comparative results in terms of the PI. 

 No. of 
Hidden Nodes 

Training  
data 

Testing  
Data 

Proposed 
Method 

6 0.1104±0.0058 0.1298±0.0444 
8  0.1081± 0.0122 0.1277±0.0388 

10 0.1004±0.0091 0.1248±0.0202 
12 0.0986±0.0066 0.1197±0.0456 

Otsu’s 
Model 0.1831±0.00998 

 

To further evaluate our method, we used a data set coming from Ammoudara 
beach, which is located to the city of Heraklion at the northern coast of Crete (Greece). 
We used exactly the same RBF network that was trained by the data set from Faro 
beach. That is to say, the data set form Ammoudara beach are used all as testing data 
and the network had exactly the same parameter values as in the case of Faro beach. 
Again we compared our network with Otsu’s method [20]. The results of this 
experimental case are reported in Fig. (4) and Table 3. According to those results, our 
network performed remarkably well, although the data set was “unknown” to it. 
Finally, similarly to the previous case, we can easily verify the superior behavior of the 
proposed method. 

5   Conclusions 

In this paper we have investigated the efforts to assess and enhance the automatic 
shoreline detection from images representing the sum of the absolute pixel intensity 
differences between consecutive images, obtained by a specialized monitoring system. 
The approach was exclusively carried out in terms of a sophisticated radial basis 
function neural network structure, which was trained by a fuzzy clustering scheme. 



The experimental findings showed an effective performance with respect to the 
shoreline detection and extraction. 
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