Geophysical flows under location uncertainty, Part III SQG and frontal dynamics under strong turbulence conditions

Valentin Resseguier 1, 2, * Etienne Mémin 1 Bertrand Chapron 2
* Auteur correspondant
1 FLUMINANCE - Fluid Flow Analysis, Description and Control from Image Sequences
IRMAR - Institut de Recherche Mathématique de Rennes, IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Inria Rennes – Bretagne Atlantique
Abstract : Models under location uncertainty are derived assuming that a component of the velocity is uncorrelated in time. The material derivative is accordingly modified to include an advection correction, inhomogeneous and anisotropic diffusion terms and a multiplicative noise contribution. This change can be consistently applied to all fluid dynamics evolution laws. This paper continues to explore benefits of this framework and consequences of specific scaling assumptions. Starting from a Boussinesq model under location uncertainty, a model is developed to describe a mesoscale flow subject to a strong underlying submesoscale activity. Specifically , turbulent diffusion and rotation effects have similar orders of magnitude. As obtained, the geostrophic balance is modified and the Quasi-Geostrophic (QG) assumptions remarkably lead to a zero Potential Vorticity (PV). The ensuing Surface Quasi-Geostrophic (SQG) model provides a simple diagnosis of warm frontolysis and cold frontogenesis.
Liste complète des métadonnées

https://hal.inria.fr/hal-01391484
Contributeur : Valentin Resseguier <>
Soumis le : vendredi 10 mars 2017 - 06:50:37
Dernière modification le : mardi 19 juin 2018 - 11:12:07
Document(s) archivé(s) le : dimanche 11 juin 2017 - 12:31:23

Fichiers

Geophysical_flows_under_locati...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Valentin Resseguier, Etienne Mémin, Bertrand Chapron. Geophysical flows under location uncertainty, Part III SQG and frontal dynamics under strong turbulence conditions. Geophysical and Astrophysical Fluid Dynamics, Taylor & Francis, 2017, 111 (3), pp.209-227. 〈10.1080/03091929.2017.1312102〉. 〈hal-01391484v3〉

Partager

Métriques

Consultations de la notice

626

Téléchargements de fichiers

68