M. Bar and S. Ullman, Spatial Context in Recognition, Perception, vol.32, issue.3, pp.343-352, 1996.
DOI : 10.1068/p250343

P. J. Bennett and J. Pratt, The Spatial Distribution of Inhibition of Return, Psychological Science, vol.20, issue.1, pp.76-80, 2001.
DOI : 10.1111/1467-9280.00166

I. Biederman, J. C. Rabinowitz, A. L. Glass, and E. W. Stacy, On the information extracted from a glance at a scene., Journal of Experimental Psychology, vol.103, issue.3, p.597, 1974.
DOI : 10.1037/h0037158

G. Boccignone and M. Ferraro, Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications, pp.640-218, 2004.

G. Boccignone and M. Ferraro, Modelling eye-movement control via a constrained search approach, 3rd European Workshop on Visual Information Processing, pp.235-240, 2011.
DOI : 10.1109/EuVIP.2011.6045540

A. Borji and L. Itti, State-of-the-Art in Visual Attention Modeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.1, pp.185-207, 2013.
DOI : 10.1109/TPAMI.2012.89

A. Borji, A. Lennartz, and M. Pomplun, What do eyes reveal about the mind?, Neurocomputing, vol.149, pp.788-799, 2015.
DOI : 10.1016/j.neucom.2014.07.055

D. Brockmann and T. Geisel, The ecology of gaze shifts, Neurocomputing, vol.32, issue.33, pp.643-650, 2000.
DOI : 10.1016/S0925-2312(00)00227-7

N. Bruce and J. Tsotsos, Saliency, attention, and visual search: An information theoretic approach, Journal of Vision, vol.9, issue.3, pp.1-24, 2009.
DOI : 10.1167/9.3.5

N. D. Bruce, C. Wloka, N. Frosst, S. Rahman, and J. K. Tsotsos, On computational modeling of visual saliency: Examining whats right, and whats left, Vision research, 2015.

G. Buscher, E. Cutrell, and M. R. Morris, What do you see when you're surfing? using eye tracking to predict salient regions of web pages, Proceedings of CHI 2009, 2009.

Z. Bylinskii, T. Judd, A. Borji, L. Itti, and F. Durand, Mit saliency benchmark, p.660, 2015.

R. Carmi and L. Itti, Visual causes versus correlates of attentional selection in dynamic scenes, Vision Research, vol.46, issue.26, pp.4333-4345, 2006.
DOI : 10.1016/j.visres.2006.08.019

M. Cerf, J. Harel, W. Einhäuser, and C. Koch, Predicting human gaze using low-level saliency combined with face detection, Advances in neural 665 information processing systems, pp.241-248, 2008.

T. Chuk, A. B. Chan, and J. H. Hsiao, Understanding eye movements in face recognition using hidden Markov models, Journal of Vision, vol.14, issue.11, 2014.
DOI : 10.1167/14.11.8

M. M. Chun, Contextual cueing of visual attention, Trends in cognitive sciences, pp.170-178, 2000.
DOI : 10.1016/S1364-6613(00)01476-5

J. J. Clark and N. J. Ferrier, Modal Control Of An Attentive Vision System, [1988 Proceedings] Second International Conference on Computer Vision, pp.514-523, 1988.
DOI : 10.1109/CCV.1988.590032

A. Coutrot and N. Guyader, An audiovisual attention model for natural conversation scenes, 2014 IEEE International Conference on Image Processing (ICIP), pp.1100-1104, 2014.
DOI : 10.1109/ICIP.2014.7025219

URL : https://hal.archives-ouvertes.fr/hal-01009467

A. Coutrot and N. Guyader, How saliency, faces, and sound influence gaze in dynamic social scenes, Journal of Vision, vol.14, issue.8, p.5, 2014.
DOI : 10.1167/14.8.5

URL : https://hal.archives-ouvertes.fr/hal-01018237

W. Einhäuser, M. Spain, and P. Perona, Objects predict fixations better than early saliency, Journal of Vision, vol.8, issue.14, p.18, 2008.
DOI : 10.1167/8.14.18

S. R. Ellis and J. D. Smith, Patterns of statistical dependency in visual 680 scanning, Eye Movements and Human Information Processing chapter Eye Movements and Human Information Processing, pp.221-238, 1985.

B. Follet, L. Meur, O. Baccino, and T. , New insights into ambient and focal visual fixations using an automatic classification algorithm. i-Perception, pp.592-610, 2011.
URL : https://hal.archives-ouvertes.fr/halshs-00642987

T. Foulsham, A. Kingstone, and G. Underwood, Turning the world around: Patterns in saccade direction vary with picture orientation, Vision Research, vol.48, issue.17, pp.1777-1790, 2008.
DOI : 10.1016/j.visres.2008.05.018

D. A. Gajewski, A. M. Pearson, M. L. Mack, I. Bartlett, and F. N. Henderson, Human Gaze Control in Real World Search, Attention and performance in computational vision, pp.83-99, 2005.
DOI : 10.1007/978-3-540-30572-9_7

A. Garcia-diaz, X. R. Fdez-vidal, X. M. Pardo, and R. Dosil, Saliency from hierarchical adaptation through decorrelation and variance normalization, Image and Vision Computing, vol.30, issue.1, pp.51-64, 2012.
DOI : 10.1016/j.imavis.2011.11.007

M. R. Greene, T. Liu, and J. M. Wolfe, Reconsidering Yarbus: A failure to predict observers??? task from eye movement patterns, Vision Research, vol.62, pp.1-8, 2012.
DOI : 10.1016/j.visres.2012.03.019

J. Harel, C. Koch, and P. Perona, Graph-based visual saliency, Proceedings of Neural Information Processing Systems (NIPS, 2006.

J. M. Henderson and A. Hollingworth, High-level scene perception. Annual review of psychology, pp.243-271, 1999.

L. Itti and C. Koch, A saliency-based search mechanism for overt and covert shifts of visual attention, Vision Research, vol.40, issue.10-12, pp.1489-1506, 2000.
DOI : 10.1016/S0042-6989(99)00163-7

L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.11, pp.1254-1259, 1998.
DOI : 10.1109/34.730558

T. Judd, F. Durand, and A. Torralba, A benchmark of computational models of saliency to predict human fixations, MIT Technical Report, 2012.

T. Judd, K. Ehinger, F. Durand, and A. Torralba, Learning to predict where people look, ICCV . IEEE, 2009.

C. Kanan, D. N. Bseiso, N. A. Ray, J. H. Hsiao, and G. W. Cottrell, Humans have idiosyncratic and task-specific scanpaths for judging faces, Vision Research, vol.108, pp.67-76, 2015.
DOI : 10.1016/j.visres.2015.01.013

C. Koch and S. Ullman, Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry, Human Neurobiology, vol.4, pp.219-227, 1985.
DOI : 10.1007/978-94-009-3833-5_5

G. Kootstra, B. De-boer, and L. Schomaler, Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry, Cognitive Computation, vol.16, issue.2, pp.223-240, 2011.
DOI : 10.1007/s12559-010-9089-5

L. Meur and O. , Predicting saliency using two contextual priors: the dominant depth and the horizon line, Multimedia and Expo (ICME), 2011 IEEE International Conference on, pp.1-6, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00628076

L. Meur, O. Baccino, and T. , Methods for comparing scanpaths and saliency maps: strengths and weaknesses, Behavior Research Methods, vol.11, issue.3, Art. 9, pp.251-266, 2013.
DOI : 10.3758/s13428-012-0226-9

URL : https://hal.archives-ouvertes.fr/hal-00757615

L. Meur, O. , L. Callet, P. Barba, D. Thoreau et al., A coherent computational approach to model the bottom-up visual attention, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00669578

L. Meur, O. Liu, and Z. , Saliency aggregation: Does unity make strength, Asian Conference on Computer Vision (ACCV, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01085898

L. Meur, O. Liu, and Z. , Saccadic model of eye movements for free-viewing condition, Vision research, vol.1, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204682

S. Marat, A. Rahman, D. Pellerin, N. Guyader, and D. Houzet, Improving Visual Saliency by Adding ???Face Feature Map??? and ???Center Bias???, Cognitive Computation, vol.10, issue.10, pp.63-75, 2013.
DOI : 10.1007/s12559-012-9146-3

URL : https://hal.archives-ouvertes.fr/hal-00703762

S. Martinez-conde, J. Otero-millan, and S. L. Macknik, The impact of microsaccades on vision: towards a unified theory of saccadic function, Nature Reviews Neuroscience, vol.15, issue.6, pp.83-96, 2013.
DOI : 10.1038/nrn3405

E. Mehoudar, J. Arizpe, C. I. Baker, and G. Yovel, Faces in the eye of the beholder: Unique and stable eye scanning patterns of individual observers 6. ments to natural images as a function of sex and personality, Journal of vision PLoS ONE, vol.14, issue.7 e47870, 2014.

P. K. Mital, T. J. Smith, R. L. Hill, and J. M. Henderson, Clustering of Gaze During Dynamic Scene Viewing is Predicted by Motion, Cognitive 750 Computation, pp.5-24, 2010.
DOI : 10.1007/s12559-010-9074-z

L. Nummenmaa, J. Hyönä, and M. Calvo, Emotional scene content drives the saccade generation system reflexively., Journal of Experimental Psychology: Human Perception and Performance, vol.35, issue.2, pp.305-323, 2009.
DOI : 10.1037/a0013626

M. Nyström and K. Holmqvist, Semantic override of low-level features in 755 image viewing-both initially and overall, Journal of Eye-Movement Research, vol.2, pp.2-3, 2008.

O. Connell, T. P. Walther, and D. B. , Dissociation of salience-driven and content-driven spatial attention to scene category with predictive decoding of gaze patterns, Journal of Vision, vol.15, issue.5, pp.20-20, 2015.
DOI : 10.1167/15.5.20

D. Parkhurst, K. Law, and E. Niebur, Modeling the role of salience in the allocation of overt visual attention, Vision Research, vol.42, issue.1, pp.107-123, 2002.
DOI : 10.1016/S0042-6989(01)00250-4

J. Peacock, Two-dimensional goodness-of-fit testing in astronomy, Monthly Notices of the Royal Astronomical Society, vol.202, issue.3, pp.615-627, 1983.
DOI : 10.1093/mnras/202.3.615

J. B. Pelz and R. Canosa, Oculomotor behavior and perceptual strategies in complex tasks, Vision Research, vol.41, issue.25-26, pp.3587-3596, 2001.
DOI : 10.1016/S0042-6989(01)00245-0

R. J. Peters, A. Iyer, L. Itti, and C. Koch, Components of bottom-up gaze allocation in natural images, Vision Research, vol.45, issue.18, pp.2397-2416, 2005.
DOI : 10.1016/j.visres.2005.03.019

M. C. Potter, B. Wyble, C. E. Hagmann, and E. S. Mccourt, Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, & 770 Psychophysics, pp.270-279, 2014.

N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini, B. Gosselin et al., RARE2012: A multi-scale rarity-based saliency detection with its comparative statistical analysis, Signal Processing: Image Communication, pp.642-658, 2013.
DOI : 10.1016/j.image.2013.03.009

C. Shen and Q. Zhao, Webpage Saliency, ECCV . IEEE, 2014.
DOI : 10.1007/978-3-319-10584-0_3

B. W. Silverman, Density Estimation for Statistics and Data Analysis, 1986.
DOI : 10.1007/978-1-4899-3324-9

T. J. Smith and P. K. Mital, Attentional synchrony and the influence 780 of viewing task on gaze behavior in static and dynamic scenes, Journal of Vision, vol.13, pp.1-24, 2013.

B. Tatler and B. Vincent, Systematic tendencies in scene viewing, Journal of Eye Movement Research, vol.2, pp.1-18, 2008.

B. Tatler and B. T. Vincent, The prominence of behavioural biases in eye 785 guidance, Visual Cognition, Special Issue: Eye Guidance in Natural Scenes, vol.17, pp.1029-1059, 2009.

B. W. Tatler, The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions, Journal of Vision, vol.7, issue.14, 2007.
DOI : 10.1167/7.14.4

B. W. Tatler, R. J. Baddeley, and I. D. Gilchrist, Visual correlates of fixation selection: effects of scale and time, Vision Research, vol.45, issue.5, pp.643-659, 2005.
DOI : 10.1016/j.visres.2004.09.017

B. W. Tatler, M. M. Hayhoe, M. F. Land, and D. H. Ballard, Eye guidance in natural vision: Reinterpreting salience, Journal of Vision, vol.11, issue.5, 2011.
DOI : 10.1167/11.5.5

H. Tavakoli, E. Rahtu, and J. Heikkika, Stochastic bottom???up fixation prediction and saccade generation, Image and Vision Computing, vol.31, issue.9, pp.686-693, 2013.
DOI : 10.1016/j.imavis.2013.06.006

S. J. Thorpe, D. Fize, and C. Marlot, Speed of processing in the human visual system, Nature, vol.381, issue.6582, pp.520-522, 1996.
DOI : 10.1038/381520a0

A. Torralba, A. Oliva, M. Castelhano, and J. Henderson, Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search., Psychological Review, vol.113, issue.4, pp.766-786, 2006.
DOI : 10.1037/0033-295X.113.4.766

H. A. Trukenbrod and R. Engbert, ICAT: a computational model for the adaptive control of fixation durations, Psychonomic Bulletin & Review, vol.36, issue.3, pp.907-934, 2014.
DOI : 10.3758/s13423-013-0575-0

J. K. Tsotsos, S. M. Culhane, W. Kei, W. Y. Lai, Y. Davis et al., Modeling visual attention via selective tuning, Artificial Intelligence, vol.78, issue.1-2, pp.507-545, 1995.
DOI : 10.1016/0004-3702(95)00025-9

P. Unema, S. Pannasch, M. Joos, and B. Velichkovsky, Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration, Visual Cognition, vol.5, issue.2, pp.473-494, 2005.
DOI : 10.1016/S0028-3932(97)00006-7

A. Vailaya, M. A. Figueiredo, A. K. Jain, and H. Zhang, Image classification for content-based indexing, IEEE Transactions on Image Processing, vol.10, issue.1, pp.117-130, 2001.
DOI : 10.1109/83.892448

J. M. Wolfe and T. S. Horowitz, What attributes guide the deployment 815 of visual attention and how do they do it?, Nature Reviews Neuroscience, vol.5, pp.1-7, 2004.

C. Wu, F. A. Wick, and M. Pomplun, Guidance of visual attention by semantic information in real-world scenes, Frontiers in Psychology, vol.5, pp.1-13, 2014.
DOI : 10.3389/fpsyg.2014.00054