Automated Analysis of Underground Marketplaces

Abstract : Cyber criminals congregate and operate in crowded online underground marketplaces. Because forensic investigators lack efficient and reliable tools, they are forced to analyze the marketplace channels manually to locate criminals – a complex, time-consuming and expensive task. This paper demonstrates how machine learning algorithms can be used to automatically determine if a communication channel is used as an underground marketplace. Experimental results demonstrate that the classification system, which uses features related to the cyber crime domain, correctly classifies 51.3 million messages. The automation can significantly reduce the manual effort and the costs involved in investigating online underground marketplaces.
Type de document :
Communication dans un congrès
Gilbert Peterson; Sujeet Shenoi. 10th IFIP International Conference on Digital Forensics (DF), Jan 2014, Vienna, Austria. Springer, IFIP Advances in Information and Communication Technology, AICT-433, pp.31-42, 2014, Advances in Digital Forensics X. 〈10.1007/978-3-662-44952-3_3〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01393757
Contributeur : Hal Ifip <>
Soumis le : mardi 8 novembre 2016 - 10:46:07
Dernière modification le : vendredi 1 décembre 2017 - 01:17:03
Document(s) archivé(s) le : mardi 14 mars 2017 - 18:52:25

Fichier

978-3-662-44952-3_3_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Aleksandar Hudic, Katharina Krombholz, Thomas Otterbein, Christian Platzer, Edgar Weippl. Automated Analysis of Underground Marketplaces. Gilbert Peterson; Sujeet Shenoi. 10th IFIP International Conference on Digital Forensics (DF), Jan 2014, Vienna, Austria. Springer, IFIP Advances in Information and Communication Technology, AICT-433, pp.31-42, 2014, Advances in Digital Forensics X. 〈10.1007/978-3-662-44952-3_3〉. 〈hal-01393757〉

Partager

Métriques

Consultations de la notice

96

Téléchargements de fichiers

23