Kernel Principal Components Analysis with Extreme Learning Machines for Wind Speed Prediction

Hatem Mezaache 1 Hassen Bouzgou 1 Christian Raymond 2, *
* Auteur correspondant
2 LinkMedia - Creating and exploiting explicit links between multimedia fragments
Inria Rennes – Bretagne Atlantique , IRISA-D6 - MEDIA ET INTERACTIONS
Abstract : Nowadays, wind power and precise forecasting are of great importance for the development of modern electrical grids. In this paper we propose a prediction system for time series based on Kernel Principal Component Analysis (KPCA) and Extreme Learning Machine (ELM). To compare the proposed approach, three dimensionality reduction techniques were used: full space (50 variables), part of space (last four variables) and classical Principal Components Analysis (PCA). These models were compared using three evaluation criteria: mean absolute error (MAE), root mean square error (RMSE), and normalized mean square error (NMSE). The results show that the reduction of the original input space affects positively the prediction output of the wind speed. Thus, It can be concluded that the non linear model (KPCA) model outperform the other reduction techniques in terms of prediction performance.
Type de document :
Communication dans un congrès
Seventh International Renewable Energy Congress, IREC2016, Mar 2016, Hammamet, Tunisia
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01394000
Contributeur : Christian Raymond <>
Soumis le : mardi 8 novembre 2016 - 14:45:27
Dernière modification le : vendredi 1 décembre 2017 - 01:22:19
Document(s) archivé(s) le : mardi 14 mars 2017 - 22:54:13

Fichier

irec2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01394000, version 1

Citation

Hatem Mezaache, Hassen Bouzgou, Christian Raymond. Kernel Principal Components Analysis with Extreme Learning Machines for Wind Speed Prediction. Seventh International Renewable Energy Congress, IREC2016, Mar 2016, Hammamet, Tunisia. 〈hal-01394000〉

Partager

Métriques

Consultations de la notice

216

Téléchargements de fichiers

145