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Arb: Efficient Arbitrary-Precision
Midpoint-Radius Interval Arithmetic

Fredrik Johansson

Abstract—Arb is a C library for arbitrary-precision interval arithmetic using the midpoint-radius representation, also known as ball
arithmetic. It supports real and complex numbers, polynomials, power series, matrices, and evaluation of many special functions. The
core number types are designed for versatility and speed in a range of scenarios, allowing performance that is competitive with
non-interval arbitrary-precision types such as MPFR and MPC floating-point numbers. We discuss the low-level number representation,
strategies for precision and error bounds, and the implementation of efficient polynomial arithmetic with interval coefficients.

Index Terms—Arbitrary-precision arithmetic, interval arithmetic, floating-point arithmetic, polynomial arithmetic
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1 INTRODUCTION

INTERVAL arithmetic allows computing with real numbers
in a mathematically rigorous way by automatically track-

ing error bounds through the steps of a program [1]. Suc-
cess stories of interval arithmetic in mathematical research
include Hales’s proof of the Kepler conjecture [2], Helfgott’s
proof of the ternary Goldbach conjecture [3], and Tucker’s
positive solution of Smale’s 14th problem concerning the
existence of the Lorenz attractor [4].

The main drawback of interval arithmetic is that the
bounds can blow up catastrophically, perhaps only telling
us that x ∈ [−∞,∞]. Assuming that all input intervals
can be made sufficiently precise, increasing the working
precision is an effective way to circumvent this problem.
One well-known implementation of arbitrary-precision in-
terval arithmetic is MPFI [5], which builds on the MPFR [6]
library for arbitrary-precision floating-point arithmetic with
correct rounding. MPFI extends the principles of MPFR to
provide a well-defined semantics by guaranteeing that each
built-in interval operation produces the smallest possible
output interval (of course, composing operations will still
generally lead to overestimation). Due to the difficulty of
computing optimal floating-point enclosures, MPFR, MPFI
and the complex MPFR extension MPC [7] are currently
limited to a small set of built-in functions.

In this paper, we present Arb, a C library for arbitrary-
precision arithmetic using midpoint-radius intervals. In
midpoint-radius arithmetic, or ball arithmetic, a real number
is represented by an enclosure [m±r] where the midpointm
and the radius r are floating-point numbers. The advantage
of this representation over the more traditional endpoint-
based intervals [a, b] used in MPFI is that only m needs to
be tracked to full precision; a few digits suffice for r, as in

π ∈ [3.14159265358979323846264338328± 1.07 · 10−30].

At high precision, this costs (1+ε) as much as floating-point
arithmetic, saving a factor two over endpoint intervals.
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We argue that midpoint-radius arithmetic not only is a
viable alternative to endpoint-based interval arithmetic, but
competitive with floating-point arithmetic in contexts where
arbitrary precision is used, e.g. in computer algebra systems.
The small (if not completely negligible) overhead of tracking
errors automatically affords us the freedom to use more
complex algorithms with confidence in the output.

Our focus is on “narrow” intervals, say [π ± 2−30]. That
is, we are more concerned with bounding arithmetic error
starting from points than bracketing functions on “wide”
intervals, say sin([3, 4]). For the latter, high-degree Taylor
approximations are often better than plain intervals [8]. Arb
has good support for Taylor expansion (automatic differen-
tiation), though presently only in one variable.

We use the ball representation for real numbers, con-
structing complex numbers, polynomials and matrices out
of real balls. This is the most convenient approach, but we
note that the concept of ball arithmetic can be generalized
directly to normed vector spaces, e.g. giving disks for com-
plex numbers and norm perturbation bounds for matrices,
which has some advantages [9]. Ball arithmetic in some form
is an old idea, previously used in e.g. Mathemagix [10],
[11] and iRRAM [12]. Our contributions include low-level
optimizations as well as the scope of high-level features.

One such high-level feature is fast, reliable evaluation of
transcendental functions, which are needed with high pre-
cision in many scientific applications [13]. Arb implements
elementary, complete and incomplete gamma and beta, zeta,
polylogarithm, Bessel, Airy, exponential integral, hypergeo-
metric, modular, elliptic and other special functions with full
support for complex variables. The speed is typically better
than previous arbitrary-precision software, despite tracking
error bounds rigorously. In this paper, we aim to describe
the core functionality of Arb while algorithms for specific
functions (which rely heavily on this core) are described in
the separate papers [14], [15], [16].

An early version of Arb was presented in [17]. The
present paper offers a more detailed view and covers new
developments. Most notably, the core datatypes have been
redesigned from scratch to improve performance, as de-
tailed in section 3 (see sections 4 and 6 for benchmarks).
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2 FEATURES AND EXAMPLE APPLICATIONS

Arb is free software distributed under the GNU Lesser
General Public License (LGPL). The public git repository is
https://github.com/fredrik-johansson/arb/ and documen-
tation is available at http://arblib.org/. The code is thread-
safe, written in portable C, and builds in most common
environments. An extensive test suite is included.

Arb depends on GMP [18] or the fork MPIR [19] for
low-level bignum arithmetic, MPFR for some operations on
floating-point numbers and for testing (MPFR numbers are
not used directly), and FLINT [20] for arithmetic over the
exact rings Z, Q and Z/nZ and polynomials over these rings.
Conceptually, Arb extends FLINT’s numerical tower to the
rings R and C, and follows similar coding conventions as
FLINT. Arb provides the following core types:

• arf_t - arbitrary-precision floating-point numbers
• mag_t - unsigned floating-point numbers
• arb_t - real numbers, represented in midpoint-

radius interval form [m ± r] where m is an arf_t
and r is a mag_t

• acb_t - complex numbers, represented in Cartesian
form a+ bi where a, b are arb_t real intervals

• arb_poly_t, acb_poly_t - real and complex
dense univariate polynomials

• arb_mat_t, acb_mat_t - dense matrices

Each type comes with a set of methods. For example,
arb_add(z, x, y, prec) sets the arb_t variable z to
the sum of the arb_t variables x and y, performing the
computation at prec bits of precision.

In the git version as of November 2016, there are
around 1850 documented methods in total, including al-
ternative implementations of the same mathematical op-
eration. For example, there are methods for computing
the Riemann zeta function ζ(s) using Borwein’s algo-
rithm, the Euler product, Euler-Maclaurin summation, and
the Riemann-Siegel formula. The user will most likely
only need the “top-level” methods arb_zeta, acb_zeta,
arb_poly_zeta_series or acb_poly_zeta_series
(the latter two compute series expansions, i.e. derivatives
with respect to s) which automatically try to choose the best
algorithm depending on s and the precision, but methods
for specific algorithms are available for testing purposes and
as an option if the default choice is suboptimal.

Arb includes some 650 test programs that cover almost
all the methods. Typically, a test program exercises a single
method (or variants of the same method) by generating
103 to 106 random inputs, computing the same mathemat-
ical quantity in two different ways (by using a functional
identity, switching the algorithm, or varying parameters
such as the precision), and verifying that the results are
consistent, e.g. that two intervals that should represent the
same real number overlap. Random intervals are generated
non-uniformly to hit corner cases with high probability.

2.1 Software and language issues
C is a suitable language for library development due to
its speed, support for fine-grained memory management,
fast compilation, portability, and ease of interfacing from
other languages. The last point is important, since the

lack of operator overloading and high-level generic data
types makes C cumbersome for many potential users. High-
level interfaces to Arb are available in the Python-based
SageMath computer algebra system [21], a separate Python
module1, and the Julia computer algebra package Nemo2.

Perhaps the biggest drawback of C as an implementation
language is that it provides poor protection against sim-
ple programming errors. This makes stringent unit testing
particularly important. We have found running unit tests
with Valgrind/Memcheck [22] to be indispensable for de-
tecting memory leaks, uses of uninitialized variables, out-
of-bounds array accesses, and other similar mistakes.

Arb is designed to be thread-safe, and in particular,
avoids global state. However, thread-local storage is used
for some internal caches. To avoid leaking memory, the
user should call flint_cleanup() before exiting a thread,
which frees all caches used by FLINT, MPFR and Arb. A few
Arb methods (such as matrix multiplication) can use several
threads internally, but only one thread is used by default;
the user can set the number of threads available for internal
use with flint_set_num_threads().

2.2 Numerical evaluation with guaranteed accuracy
We now turn to demonstrating typical use. With arbitrary-
precision interval arithmetic, a formula can often be evalu-
ated to a desired tolerance by trying with few guard bits and
simply starting over with more guard bits if the resulting
interval is too wide. The precision steps can be fine-tuned
for a specific problem, but generally speaking, repeatedly
doubling either the total precision or the guard bits tends to
give close to optimal performance. The following program
computes sin(π + e−10000) to a relative accuracy of 53 bits.

#include "arb.h"
int main() {

long prec;
arb_t x, y;
arb_init(x); arb_init(y);
for (prec = 64; ; prec *= 2) {

arb_const_pi(x, prec);
arb_set_si(y, -10000);
arb_exp(y, y, prec);
arb_add(x, x, y, prec);
arb_sin(y, x, prec);
arb_printn(y, 15, 0); printf("\n");
if (arb_rel_accuracy_bits(y) >= 53)

break;
}
arb_clear(x); arb_clear(y);
flint_cleanup();

}

The output is:

[+/- 6.01e-19]
[+/- 2.55e-38]
[+/- 8.01e-77]
[+/- 8.64e-154]
[+/- 5.37e-308]
[+/- 3.63e-616]
[+/- 1.07e-1232]
[+/- 9.27e-2466]
[-1.13548386531474e-4343 +/- 3.91e-4358]

1. https://github.com/fredrik-johansson/python-flint
2. http://nemocas.org

https://github.com/fredrik-johansson/arb/
http://arblib.org/
https://github.com/fredrik-johansson/python-flint
http://nemocas.org


3

The Arb repository includes example programs that use
similar precision-increasing loops to solve various standard
test problems such as computing the n-th iterate of the lo-
gistic map, the determinant of the n×nHilbert matrix, or all
the complex roots of a given degree-n integer polynomial.

2.2.1 Floating-point functions with guaranteed accuracy
The example program shown above is easily turned into
a function that takes double input, approximates some
mathematical function to 53-bit accuracy, and returns the
interval midpoint rounded to a double. Of course, the
precision goal can be changed to any other number of bits,
and any other floating-point type can be used.

We have created a C header file that wraps Arb to
provide higher transcendental functions for the C99 double
complex type.3 This code is obviously not competitive
with optimized double complex implementations, but
few such implementations are available that give accu-
rate results on the whole complex domain. The speed is
highly competitive with other arbitrary-precision libraries
and computer algebra systems, many of which often give
wrong results. We refer to [16] for benchmarks.

We mention a concrete use in computational hydrogeo-
physics: Kuhlman4 has developed a Fortran program for un-
confined aquifer test simulations, where one model involves
Bessel functions Jν(z) and Kν(z) with fractional ν and
complex z. Due to numerical instability in the simulation ap-
proach, the Bessel functions are needed with quad-precision
(113-bit) accuracy. A few lines of code are used to convert
from Fortran quad-precision types to Arb intervals, compute
the Bessel functions accurately with Arb, and convert back.

2.2.2 Correct rounding
We have developed an example program containing Arb-
based implementations of all the transcendental functions
available in version 3.1.3 of MPFR, guaranteeing correct
rounding to a variable number of bits in any of the MPFR
supported rounding modes (up, down, toward zero, away
from zero, and to nearest with ties-to-even) with correct
detection of exact cases, taking mpfr_t input and output
variables. This requires approximately 500 lines of wrapper
code in total for all functions. The following simple termina-
tion test ensures that rounding the midpoint of x to 53 bits
in the round-to-nearest mode will give the correct result for
this rounding mode:

if (arb_can_round_mpfr(x, 53, MPFR_RNDN))
...

Correct rounding is more difficult than simply targeting
a few ulps error, due to the table maker’s dilemma. Input
where the function value is an exact floating-point number,
such as x = 2n for the function log2(x) = log(x)/ log(2),
would cause the precision-increasing loop to repeat forever
if the interval evaluation always produced [n±ε] with ε > 0.
Such exact cases are handled in the example program. How-
ever, this code has not yet been optimized for asymptotic
cases where the function value is close to an exact floating-
point number. For example, tanh(10000) ≈ 1 to within

3. https://github.com/fredrik-johansson/arbcmath
4. https://github.com/klkuhlm/unconfined

28852 bits. MPFR internally detects such input and quickly
returns either 1 or 1− ε according to the rounding mode. To
compute tanh(2300), special handling is clearly necessary.
With the exception of such degenerate rounding cases, the
Arb-based functions generally run faster than MPFR’s built-
in transcendental functions. Note that the degenerate cases
for correct rounding do not affect normal use of Arb, where
correct rounding is not needed.

Testing the Arb-based implementations against their
MPFR equivalents for randomly generated inputs revealed
cases where MPFR 3.1.3 gave incorrect results for square
roots, Bessel functions, and the Riemann zeta function. All
cases involved normal precision and input values, which
easily could have occurred in real use. The square root bug
was caused by an edge case in bit-level manipulation of
the mantissa, and the other two involved incorrect error
analysis. The MPFR developers were able to fix the bugs
quickly, and in response strengthened their test code.

The discovery of serious bugs in MPFR, a mature library
used by major applications such as SageMath and the GNU
Compiler Collection (GCC), highlights the need for peer
review, cross-testing, and ideally, computer-assisted formal
verification of mathematical software. Automating error
analysis via interval arithmetic can eliminate certain types of
numerical bugs, and should arguably be done more widely.
One must still have in mind that interval arithmetic is not a
cure for logical errors, faulty mathematical analysis, or bugs
in the implementation of the interval arithmetic itself.

2.3 Exact computing
In fields such as computational number theory and com-
putational geometry, it is common to rely on numerical
approximations to determine discrete information such as
signs of numbers. Interval arithmetic is useful in this setting,
since one can verify that an output interval contains only
points that are strictly positive or negative, encloses exactly
one integer, etc., which then must be the correct result. We
illustrate with three examples from number theory.

2.3.1 The partition function
Some of the impetus to develop Arb came from the problem
of computing the integer partition function p(n), which
counts the number of ways n can be written as a sum
of positive integers, ignoring order. The famous Hardy-
Ramanujan-Rademacher formula (featuring prominently in
the plot of the 2015 film The Man Who Knew Infinity) ex-
presses p(n) as an infinite series of transcendental terms

p(n) = C(n)
∞∑
k=1

Ak(n)

k
I3/2

(
π

k

√
2

3

(
n− 1

24

))
, (1)

where I3/2(x) = (2/π)1/2x−3/2(x cosh(x) − sinh(x)),
C(n) = 2π(24n − 1)−3/4, and Ak(n) denotes a certain
complex exponential sum. If a well-chosen truncation of (1)
is evaluated using sufficiently precise floating-point arith-
metic, one obtains a numerical approximation y ≈ p(n) such
that p(n) = by+1/2c. Getting this right is far from trivial, as
evidenced by the fact that past versions of Maple computed
p(11269), p(11566), . . . incorrectly [23].

It was shown in [24] that p(n) can be computed in quasi-
optimal time, i.e. in time essentially linear in log(p(n)), by

https://github.com/klkuhlm/unconfined
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careful evaluation of (1). This algorithm was implemented
using MPFR arithmetic, which required a laborious floating-
point error analysis to ensure correctness. Later reimple-
menting the algorithm in Arb made the error analysis nearly
trivial and allowed improving speed by a factor two (in part
because of faster transcendental functions in Arb, and in
part because more aggressive optimizations could be made).

Arb computes the 111 391-digit number p(1010) in 0.3
seconds, whereas Mathematica 9.0 takes one minute. Arb
has been used to compute the record value p(1020) =
1838176508 . . . 6788091448, an integer with more than
11 billion digits.5 This took 110 hours (205 hours split across
two cores) with 130 GB peak memory usage.

Evaluating (1) is a nice benchmark problem for arbitrary-
precision software, because the logarithmic magnitudes of
the terms follow a hyperbola. For n = 1020, one has to
evaluate a few terms to billions of digits, over a billion
terms to low precision, and millions of terms to precisions
everywhere in between, exercising the software at all scales.
For large n, Arb spends roughly half the time on computing
π and sinh(x) in the first term of (1) to full precision.

The main use of computing p(n) is to study residues p(n)
mod m, so getting the last digit right is crucial. Computing
the full value of p(n) via (1) and then reducing mod m is
the only known practical approach for huge n.

2.3.2 Class polynomials
The Hilbert class polynomial HD ∈ Z[x] (where D < 0 is
an imaginary quadratic discriminant) encodes information
about elliptic curves. Applications of computing the coeffi-
cients of HD include elliptic curve primality proving and
generating curves with desired cryptographic properties.
An efficient way to construct HD uses the factorization

HD =
∏
k

(x− j(τk))

where τk are complex algebraic numbers and j(τ) is a
modular function expressible in terms of Jacobi theta func-
tions. Computing the roots numerically via the j-function
and expanding the product yields approximations of the
coefficients of HD , from which the exact integers can be
deduced if sufficiently high precision is used. Since HD has
degree O(

√
|D|) and coefficients of size 2O(

√
|D|), both the

numerical evaluation of j(τ) and the polynomial arithmetic
needs to be efficient and precise for large |D|. An imple-
mentation of this algorithm in Arb is as fast as the state-
of-the-art floating-point implementation by Enge [25], and
checking that each coefficient’s computed interval contains
a unique integer gives a provably correct result.

2.3.3 Cancellation and the Riemann hypothesis
In [15], Arb was used to rigorously determine values of the
first n = 105 Keiper-Li coefficients and Stieltjes constants,
which are certain sequences of real numbers defined in
terms of high-order derivatives of the Riemann zeta func-
tion. The Riemann hypothesis is equivalent to the statement
that all Keiper-Li coefficients λn are positive, and finding an
explicit λn < 0 would constitute a disproof. Unfortunately

5. http://fredrikj.net/blog/2014/03/new-partition-function-record/

for the author, the data agreed with the Riemann hypothesis
and other open conjectures.

These computations suffer from severe cancellation in
the evaluated formulas, meaning that to compute an n-th
derivative to just a few significant digits, or indeed just
to determine its sign, a precision of n bits has to be used;
in other words, for n = 105, Arb was used to manipulate
polynomials with 1010 bits of data. Acceptable performance
was possible thanks to Arb’s use of asymptotically fast poly-
nomial arithmetic, together with multithreading for parts of
the computation that had to use slower algorithms.

More recently, Arb has been used to study general-
izations of the Keiper-Li coefficients [26]. Related to this
example, Matiyasevich and Beliakov have also performed
investigations of Dirichlet L-functions that involved using
Arb to locate zeros to very high precision [27], [28].

3 LOW-LEVEL NUMBER TYPES

In Arb version 1.0, described in [17], the same floating-
point type was used for both the midpoint and radius of an
interval. Since version 2.0, two different types are used. An
arf_t holds an arbitrary-precision floating-point number
(the midpoint), and a mag_t represents a fixed-precision
error bound (the radius). This specialization requires more
code, but enabled factor-two speedups at low precision,
with clear improvements up to several hundred bits. The
organization of the data types is shown in Table 1. In this
section, we explain the low-level design of the arf_t and
mag_t types and how they influence arb_t performance.

3.1 Midpoints
An arf_t represents a dyadic number

a · 2b, a ∈ Z[ 12 ] \ {0}, 1
2 ≤ |a| < 1, b ∈ Z,

or one of the special values {0,−∞,+∞,NaN}. Methods
are provided for conversions, comparisons, and arithmetic
operations with correct directional rounding. For example,

c = arf_add(z, x, y, 53, ARF_RND_NEAR);

sets z to the sum of x and y, correctly rounded to the nearest
floating-point number with a 53-bit mantissa (with round-
to-even on a tie). The returned int flag c is zero if the
operation is exact, and nonzero if rounding occurs.

An arf_t variable just represents a floating-point value,
and the precision is considered a parameter of an operation.
The stored mantissa a can have any bit length, and uses
dynamic allocation, much like GMP integers. In contrast,
MPFR stores the precision to be used for a result as part of
each mpfr_t variable, and always allocates space for full
precision even if only a few bits are used.

The arf_t approach is convenient for working with
exact dyadic numbers, in particular integers which can grow
dynamically from single-word values until they reach the
precision limit and need to be rounded. This is particularly
useful for evaluation of recurrence relations, in calculations
with polynomials and matrices, and in any situation where
the inputs are low-precision floating-point values but much
higher precision has to be used internally. The working
precision in an algorithm can also be adjusted on the fly
without changing each variable.

http://fredrikj.net/blog/2014/03/new-partition-function-record/
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TABLE 1
Data layout of Arb floating-point and interval types.

Exponent (fmpz_t) 1 word
Limb count + sign bit 1 word
Limb 0 Allocation count 1 word
Limb 1 Pointer to ≥3 limbs 1 word
arf_t = 4 words

Exponent (fmpz_t) 1 word
Limb 1 word
mag_t = 2 words

Midpoint (arf_t) 4 words
Radius (mag_t) 2 words
arb_t = 6 words

Real part (arb_t) 6 words
Imaginary part (arb_t) 6 words
acb_t = 12 words

3.1.1 Mantissas
The mantissa 1

2 ≤ |a| < 1 is stored as an array of
words (limbs) in little endian order, allowing GMP’s mpn
methods to be used for direct manipulation. Like MPFR’s
mpfr_t, the mantissa is always normalized so that the
top bit of the top word is set. This normalization makes
addition slower than the unnormalized representation used
by GMP’s mpf_t, but it is more economical at low precision
and allows slightly faster multiplication. For error bound
calculations, it is also extremely convenient that the expo-
nent gives upper and lower power-of-two estimates.

The second word in the arf_t struct encodes a sign
bit and the number of words n in the mantissa, with n =
0 indicating a special value. The third and fourth words
encode the mantissa. If n ≤ 2, these words store the limbs
directly. If n > 2, the third word specifies the numberm ≥ n
of allocated limbs, and the fourth word is a pointer to m
limbs, with the lowest n being in use. The mantissa is always
normalized so that its least significant limb is nonzero, and
new space is allocated dynamically if n > m limbs need to
be used. If the number of used limbs shrinks to n ≤ 2, the
heap-allocated space is automatically freed.

On a 64-bit machine, an arf_t with at most a 128-bit
mantissa (and a small exponent) is represented entirely by
a 256-bit struct without separate heap allocation, thereby
improving memory locality and speeding up creation and
destruction of variables, and many operations use fast in-
lined code specifically for the n ≤ 2 cases. When working
at p ≥ 129-bit precision, this design still speeds up common
special values such as all integers |x| < 2128 and double
constants, including the important special value zero.

In contrast, an mpfr_t consists of four words (256 bits),
plus dp/64e more words for the mantissa at p-bit preci-
sion which always need to be allocated. The MPFR format
has the advantage of being slightly faster for generic full-
precision floating-point values, especially at precision just
over 128 bits, due to requiring less logic for dealing with
different lengths of the mantissa.

3.1.2 Exponents
The first word in the arf_t struct represents an arbitrarily
large exponent as a FLINT integer, fmpz_t. An fmpz_t

with absolute value at most 262 − 1 (230 − 1 on a 32-bit sys-
tem) is immediate, and a larger value encodes a pointer to
a heap-allocated GMP bignum. This differs from most other
floating-point implementations, including MPFR, where an
exponent is confined to the numerical range of one word.

Since exponents almost always will be small in practice,
the only overhead of allowing bignum exponents with this
representation comes from an extra integer comparison (fol-
lowed by a predictable branch) every time an exponent is ac-
cessed. In fact, we encode infinities and NaNs using special
exponent values in a way that allows us to combine testing
for large exponents with testing for infinities or NaNs,
which often must be done anyway. In performance-critical
functions where an input is used several times, such as in a
ball multiplication [a±r][b±s] = [ab±(|as|+ |br|+rs)], we
only inspect each exponent once, and use optimized code for
the entire calculation when all inputs are small. The fallback
code does not need to be optimized and can deal with all
remaining cases in a straightforward way by using FLINT
fmpz_t functions to manipulate the exponent values.

Using arbitrary-size exponents has two advantages.
First, since underflow or overflow cannot occur, it becomes
easier to reason about floating-point operations. For exam-
ple, no rewriting is needed to evaluate

√
x2 + y2 correctly.

It is arguably easier for the user to check the exponent range
a posteriori if the application demands that it be bounded
(e.g. if the goal is to emulate a hardware type) than to
work around underflow or overflow when it is unwanted.
Anecdotally, edge cases related to the exponent range have
been a frequent source of (usually minor) bugs in MPFR.

Second, arbitrary-size exponents are convenient for spe-
cial functions and combinatorics (this became clear while
developing [29]), since typical expressions involving expo-
nential and gamma-type functions can be evaluated directly
without making case distinctions or switching to logarith-
mic forms. For example, Arb can evaluate the formulas
ex

2

erfc(x) and Γ(x + 1)/(Γ(k + 1)Γ(x − k + 1)) =
(x
k

)
with x = 1020 directly as written. Rewriting such formulas
is still preferable in order to improve speed or numerical
stability (giving tight intervals); see the example of tan(z)
in section 5.1. However, it is useful to leave rewriting as an
optimization that is optional as as far as possible, especially
with more complicated expressions and special functions.

Exponents can potentially grow so large that they slow
down computations or use more memory than is available.
We avoid this problem by introducing precision-dependent
exponent limits in relevant interval (arb_t and acb_t)
functions, where the information loss on underflow or over-
flow gets absorbed by the error bound, as we discuss later.

3.1.3 Feature simplifications
The arf_t type deviates from the IEEE 754 standard and
MPFR in a few important respects.

There is no global or thread-local state for exception
flags, rounding modes, default precision, exponent bounds,
or other settings. Methods that might round the output
return a flag indicating whether the result is exact. Domain
errors such as division by zero or taking the square root
of a negative number result in NaNs which propagate
through a computation to allow detection at any later
point. Since underflow and overflow cannot occur at the
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level of floating-point arithmetic, they do not need to be
handled. Memory allocation failure is considered fatal, and
presumably raises the process abort signal (provided that
the system’s malloc allows catching failed allocations). We
claim that statelessness is a feature of good library design.
This allows referential transparency, and it is arguably easier
for the user to implement their own state than to be sure that
a library’s state is in the wanted configuration at all times
(particularly since the library’s state could be mutated by
calls to external code that uses the same library).

The set of methods for the arf_t type is deliberately
kept small. The most complicated methods are arf_sum,
which adds a vector of floating-point numbers without
intermediate rounding or overflow (this is necessary for
correct implementation of interval predicates, e.g. [m1 ± r1]
and [m2 ± r2] overlap iff |m1 − m2| − r1 − r2 ≤ 0),
and arf_complex_mul which computes (e + fi) = (a +
bi)(c + di) with correct rounding. Mathematical operations
beyond addition, multiplication, division and square roots
of real numbers are only implemented for the arb_t type,
where correct rounding becomes unnecessary and interval
operations can be used internally to simplify the algorithms.

The arf_t type does not distinguish between positive
and negative zero. Signed zero is probably less useful in
ball arithmetic than in raw floating-point arithmetic. Signed
zero allows distinguishing between directional limits when
evaluating functions at discontinuities or branch cuts, but
such distinctions can be made at a higher level without
complicating the semantics of the underlying number type.

With these things said, support for omitted IEEE 754 or
MPFR features could easily be accommodated by the arf_t
data structure together with wrapper methods.

3.2 Radii and magnitude bounds

The mag_t type represents an unsigned floating-point num-
ber a · 2b, 1

2 ≤ a < 1, or one of the special values {0,+∞}.
The mantissa a has a fixed precision of 30 bits in order to
allow fast fused multiply-add operations on either 32-bit or
64-bit CPUs. The arbitrary-size exponent b is represented
the same way as in the arf_t type. Methods for the mag_t
type are optimized for speed, and may compute bounds that
are a few ulps larger than optimally rounded upper bounds.
Besides being faster than an arf_t, the mag_t type allows
cleaner code by making upward rounding automatic and
removing the need for many sign checks.

A double could have been used instead of an integer
mantissa. This might be faster if coded carefully, though the
need to normalize exponents probably takes away some of
the advantage. We do some longer error bound calculations
by temporarily converting to double values, scaled so that
overflow or underflow cannot occur. When using double
arithmetic, we always add or multiply the final result by a
small perturbation which can be proved to give a correct up-
per bound in IEEE 754 floating-point arithmetic regardless
of the CPU rounding mode or double-rounding on systems
that use extended precision, such as x86 processors with
the historical x87 floating-point unit. For correctness, we
assume that unsafe rewriting of floating-point expressions
(e.g. assuming associativity) is disabled in the compiler,
and we assume that certain double operations such as

ldexp and sqrt are correctly rounded. (Arb sometimes
uses the libm transcendental functions for heuristic tuning
parameters but never directly for error bounds.)

4 ARITHMETIC BENCHMARKS

Table 2 compares the performance of Arb intervals (arb_t),
MPFR 3.1.5 floating-point numbers (mpfr_t) and MPFI
1.5.1 intervals (mpfi_t) for basic operations on real num-
bers. Table 3 compares Arb complex intervals (acb_t) and
MPC 1.0.3 complex floating-point numbers (mpc_t). 6

TABLE 2
Time to perform a basic operation on intervals with MPFI and Arb,

normalized by the time to perform the same operation on floating-point
numbers (i.e. just the midpoints) with MPFR. As operands, we take

intervals for x =
√
3, y =

√
5 computed to full precision.

prec MPFI Arb MPFI Arb MPFI Arb
add mul fma

64 2.58 1.08 2.06 1.03 1.42 0.56
128 2.15 1.03 2.16 1.09 1.62 0.68
256 2.20 1.48 2.14 1.23 1.65 0.70
1024 2.22 1.39 2.05 0.99 1.49 0.76
4096 2.10 1.70 2.02 1.05 1.63 0.95
32768 2.11 1.65 2.02 1.02 1.78 1.00

div sqrt pow
64 2.96 1.72 2.02 1.78 0.97 0.09
128 2.81 1.79 2.01 1.50 1.21 0.11
256 2.56 1.38 2.15 1.31 1.40 0.13
1024 2.23 0.92 2.03 1.09 1.68 0.29
4096 2.09 0.82 2.03 1.04 1.94 0.67
32768 1.98 1.01 2.02 1.04 1.95 0.79

MPFI lacks fused multiply-add (fma) and pow opera-
tions, so we timed fma using a mul followed by an add, and
pow via log, mul and exp. Unlike MPFI’s built-in functions,
these naive versions do not give optimal enclosures.

Multiplication in Arb is about as fast as in MPFR, and
twice as fast as in MPFI. Ball multiplication [a± r][b± s] =
[ab±(|as|+ |br|+rs)] requires four multiplications and two
additions (plus one more addition bounding the rounding
error in the midpoint multiplication ab), but all steps except
ab are done with cheap mag_t operations.

Addition alone in Arb is slower than MPFR at high
precision since arf_add is not as well optimized. However,
addition is not usually a bottleneck at high precision. The
fused multiply-add operation in Arb is optimized to be
about as fast as a multiplication alone at low to medium
precision. This is important for matrix multiplication and
basecase polynomial multiplication. In the tested version of
MPFR, a fused multiply-add is somewhat slower than two
separate operations, which appears to be an oversight and
low-hanging fruit for improvement.

Division and square root in Arb have high overhead
at low precision compared to MPFR, due to the relatively
complicated steps to bound the propagated error. However,
since the precision in these steps can be relaxed, computing
the bounds using mag_t is still cheaper than the doubled
work to evaluate at the endpoints which MPFI performs.

6. https://github.com/fredrik-johansson/arbpaper has source code
for this paper’s benchmarks. Data obtained on an Intel i5-4300U CPU.

https://github.com/fredrik-johansson/arbpaper
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TABLE 3
Time to perform a basic operation on complex intervals with Arb,

normalized by the time to perform the same operation on complex
floating-point numbers with MPC. As operands, we take

x =
√
3 +
√
5i, y =

√
7 +
√
11i.

prec add mul fma div sqrt pow
64 1.13 0.24 0.41 0.35 0.66 0.11
128 1.50 0.29 0.41 0.34 0.77 0.11
256 1.71 0.32 0.47 0.63 0.81 0.13
1024 1.67 0.48 0.58 0.70 0.84 0.21
4096 1.51 0.93 0.98 0.89 0.91 0.44
32768 1.18 0.99 1.00 1.02 0.99 0.82

The large speedup for the transcendental pow operation
up to about 4600 bits is due to the fast algorithm for
elementary functions described in [14]. At higher precision,
Arb remains around 20% faster than MPFR and MPC due
to a more optimized implementation of the binary splitting
algorithm to compute exp and atan. Arb currently depends
on MPFR for computing log, sin and cos above 4600 bits, re-
implementation of these functions being a future possibility.

As one more test of basic arithmetic, we consider the
following function that computes N ! given a = 0, b = N .

void fac(arb_t res, int a, int b, int prec)
{

if (b - a == 1)
arb_set_si(res, b);

else {
arb_t tmp1, tmp2;
arb_init(tmp1); arb_init(tmp2);
fac(tmp1, a, a + (b - a) / 2, prec);
fac(tmp2, a + (b - a) / 2, b, prec);
arb_mul(res, tmp1, tmp2, prec);
arb_clear(tmp1); arb_clear(tmp2);

}
}

Table 4 compares absolute timings for this code and the
equivalent code using MPFR and MPFI.

TABLE 4
Time in seconds to compute recursive factorial product with N = 105.

prec MPFR MPFI Arb
64 0.0129 0.0271 0.00315
128 0.0137 0.0285 0.00303
256 0.0165 0.0345 0.00396
1024 0.0417 0.0852 0.00441
4096 0.0309 0.0617 0.00543
32768 0.109 0.234 0.00883

In this benchmark, we deliberately allocate two tem-
porary variables at each recursion step. The temporary
variables could be avoided with a minor rewrite of the
algorithm, but they are typical of real-world code. Since
most intermediate results are small integers, we also see
the benefit of allocating mantissas dynamically to opti-
mize for short partial results. Computing N ! recursively
is a model problem for various divide-and-conquer tasks

such as binary splitting evaluation of linearly recurrent se-
quences. The MPFR and MPFI versions could be optimized
by manually varying the precision or switching to integers
at a certain recursion depth (in fact, Arb does this in the
computation of exp and atan mentioned earlier), but this
becomes inconvenient in more complicated problems, such
as the evaluation of the generalized hypergeometric series
pFq(a1, . . . , ap; b1, . . . , bq; z) where the parameters (which
may be complex numbers and even truncated power series)
can have mixed lengths and sizes.

5 PRECISION AND BOUNDS

By definition, interval arithmetic must preserve set inclu-
sions. That is, if f is a point-valued function, F is a valid
interval extension of f if for any set X and any point x ∈ X ,
the inclusion f(x) ∈ F (X) holds. This leaves considerable
freedom in choosing what set F (X) to compute.

For basic arb_t arithmetic operations, we generally
evaluate the floating-point operation on the midpoint at p-
bit precision, bound the propagated error, and add a tight
bound for the result of rounding the midpoint. For example,
addition becomes [m1±r1]+[m2±r2] = [roundp(m1+m2)±
(r1 + r2 + εround)] where the radius operations are done
with upward rounding. In this case, the error bounds are
essentially the best possible, up to order 2−30 perturbations
in the mag_t radius operations.

For more complicated operations, the smallest possible
enclosure can be very difficult to determine. The design of
interval functions F in Arb has largely been dictated by
evaluation speed and convenience, following the philoso-
phy that “good enough” error bounds can serve until a
concrete application is found that mandates optimization.

5.1 Generic error bounds
Since the user inputs the precision p as a parameter, we
can think of Fp as a sequence of functions, and formulate
some useful properties that should hold. Clearly, if x is
a single point, then Fp(x) should converge to f(x) when
p → ∞, preferably with error 2O(1)−p. It is also nice to
ensure Fp({x}) = {f(x)} for all sufficiently large p if f(x)
is exactly representable. If f is continuous near the point x
and the sequence of input sets Xp converge to x sufficiently
rapidly, then Fp(Xp) should converge to f(x) when p→∞.
In particular, if f is Lipschitz continuous and Xp has radius
2O(1)−p, then Fp(X) should preferably have radius 2O(1)−p.

Let X = [m ± r] and assume that f is differentiable. A
reasonable compromise between speed and accuracy is to
evaluate f(m) to p-bit accuracy and use a first-order error
propagation bound:

sup
|t|≤r
|f(m+ t)− f(m)| ≤ C1|r|, C1 = sup

|t|≤|r|
|f ′(m+ t)|.

Of course, this presumes that a good bound for |f ′| is avail-
able. A bound on |f | can be included if r is large. For exam-
ple, form, r ∈ R, sup|t|≤|r| | sin(m+t)−sin(t)| ≤ min(2, |r|).

In practice, we implement most operations by com-
posing simpler interval operations; either because deriva-
tive bounds would be difficult to compute accurately and
quickly, or because the function composition is numerically
stable and avoids inflating the error bounds too much.
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Ideally, asymptotic ill-conditioning is captured by an el-
ementary prefactor such as ez or sin(z), whose accurate
evaluation is delegated to the corresponding arb_t or
acb_t method. Some case distinctions may be required for
different parts of the domain. For instance, Arb computes
the complex tangent as

tan(z) =



sin(z)

cos(z)
if |mid(im(z))| < 1

i− 2i exp(2iz)

1 + exp(2iz)
if mid(im(z)) ≥ 1

−i+
2i exp(−2iz)

1 + exp(−2iz)
if mid(im(z)) ≤ −1

When | im(z)| is large, the first formula is a quotient of two
large exponentials. This causes error bounds to blow up in
interval arithmetic, and for sufficiently large | im(z)|, over-
flow occurs. The alternative formulas only compute small
exponentials and add them to numbers of unit magnitude,
which is numerically stable and avoids overflow problems.

In general, transcendental functions are computed from
some combination of functional equations and finite ap-
proximations (e.g. truncated Taylor and asymptotic series),
using most of the “tricks from the book”. There are usually
three distinct steps. Evaluation parameters (e.g. the series
truncation order; working precision to compensate for can-
cellation) are first chosen using fast heuristics. The finite
approximation formula is then evaluated using interval
arithmetic. Finally, a rigorous bound for the truncation error
is computed using interval or mag_t operations.

5.2 Large values and evaluation cutoffs
If x is a floating-point number of size |x| ≈ 2n, then
computing sin(x) or exp(x) to p-bit accuracy requires n+ p
bits of internal precision for argument reduction, i.e. sub-
tracting a multiple of π or log(2) from x (the floating-point
approximation of exp(x) will also have an n-bit exponent).
This is clearly futile if x = 22

100

. It is feasible if x = 22
35

, but
in practice computing billions of digits of π is likely to be a
waste of time. For example, when evaluating the formula

log(x) + sin(x) exp(−x) (2)

we only need a crude bound for the sine and exponential to
get an accurate result if x� 0. To handle different ranges of
x and p, the user could make case distinctions, but automatic
cutoffs are useful when calculations become more complex.

As a general rule, Arb restricts internal evaluation pa-
rameters so that a method does at most O(poly(p)) work,
independent of the input value. This prevents too much
time from being spent on branches in an evaluation tree
that may turn out not to be needed for the end result. It
allows a simple precision-increasing loop to be used for
“black box” numerical evaluation that can be terminated at
any convenient point if it fails to converge rapidly enough.
In other words, the goal is not to try to solve the problem at
any cost, but to fail gracefully and allow the user to try an
alternative approach.

The cutoffs should increase in proportion to the precision
so that not too much time is wasted at low precision on
subexpressions that may turn out not to be needed, but so

that the precise values still can be computed by setting the
precision high enough.

For real trigonometric functions and exponentials, Arb
effectively computes

sin(x) =

{
[sin(x)± ε] if n ≤ max(65536, 4p)

[±1] if n > max(65536, 4p),

ex =


[ex ± ε] if n ≤ max(128, 2p)

[0, 2−2
max(128,2p)

] if n > max(128, 2p) and x < 0

[±∞] if n > max(128, 2p) and x > 0.

The automatic overflow and underflow for exp(x) is
certainly necessary with arbitrary-size exponents, but arbi-
trarily bad slowdown for a function such as sin(x) is a con-
cern even with single-word exponents, e.g. with MPFR and
MPFI. Evaluation cutoffs are useful even if the user only in-
tends to work with modest numbers, one reason being that
extremely large values can result when some initial round-
ing noise gets amplified by a sequence of floating-point
operations. It is better to pass such input through quickly
than to stall the computation. Exponential or trigonometric
terms that become irrelevant asymptotically also appear in
connection with special functions. For example, the right-
hand side in the digamma function reflection formula

ψ(1− z) = ψ(z) + π cot(πz)

with z ∈ C has the same nature as (2). In Pari/GP 2.5.5
and Mathematica 9.0, numerically evaluating ψ(−10+2100i)
results in an overflow (Maple 18 succeeds, however). Ver-
sion 0.19 of mpmath manages by using arbitrary-precision
exponents, but is unable to evaluate ψ(−10 + 22

100

i). With
Arb, computing at 53-bit precision gives

ψ(−10 + 2100i) = [69.3147180559945± 3.12 · 10−14]

+ [1.57079632679490± 3.40 · 10−15]i

and

ψ(−10 + 22
100

i) = [8.78668439483320 · 1029 ± 4.35 · 1014]

+ [1.57079632679490± 3.40 · 10−15]i.

This works automatically since a numerically stable formula
is used to compute cot(πz) (like the formula for tan(z)), and
in that formula, the tiny exponential automatically evaluates
to a power-of-two bound with a clamped exponent.

5.3 Branch cuts
Arb works with principal branches, following conventions
most common in computer algebra systems. In particular,
the complex logarithm satisfies −π < im(log(z)) ≤ π, and
the phase of a negative real number is +π. A convenience
of using rectangular complex intervals instead of disks is
that it allows representing line segments along branch cuts
without crossing the cuts. When intervals do cross branch
cuts, the image of the principal branch includes the jump
discontinuity. For example,

log(−100 + [±1]i) = [4.6052± 7.99 · 10−5] + [±3.15]i.

It would be tempting to pick an arbitrary branch, e.g.
that of the midpoint, to avoid the discontinuity. However,
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this would break formulas where the same branch choice is
assumed in two subexpressions and rounding perturbations
could place the midpoints on different sides of the cut.

It is up to the user to rewrite formulas to avoid branch
cuts when preserving continuity is necessary. For example,
to compute both square roots of a complex number (in
undefined order), one can use (

√
z,−√z) if re(mid(z)) ≥ 0

and (i
√−z,−i√−z) if re(mid(z)) < 0. Arb has limited

support for working with non-principal branches of higher
special functions: the Gauss hypergeometric function 2F1

has a branch cut on (1,∞), which is used by default, but
a method is available for continuous analytic continuation
of 2F1 along an arbitrary path, which may cross the normal
placement of the branch cut.

5.4 Decimal conversion

While computations are done in binary and binary is
recommended for serialization, human-readable decimal
output is important for user interaction. The method
arb_printn(x, d, flags), given an arb_t x = [m±r],
a decimal precision d ≥ 1, and default flags 0, prints a
decimal interval of the form [m′ ± r′] where:

• m′ and r′ are exact decimal floating-point numbers,
• m′ has at most d-digit mantissa; r′ has three digits,
• m′ is nearly a correctly rounded representation of x:

it is allowed to differ from x by at most one unit in
the last place (if x is accurate to fewer than d digits,
m′ is truncated accordingly),

• x ⊆ [m′± r′] (the output radius r′ takes into account
both the original error r and any error resulting from
the binary-to-decimal conversion).

For example, x = [884279719003555 ·2−48±536870913 ·
2−80] (a 53-bit accurate enclosure of π) is printed as
[3.141592653589793 ± 5.61 · 10−16] with d = 30 and as
[3.14 ± 1.60 · 10−3] with d = 3. The brackets and ±r′
are omitted if m′ = x. If less than one digit of x can
be determined, m′ is omitted, resulting in a magnitude-
bound output such as [±1.23 · 10−8]. (The typesetting in
conventional mathematical notation is a liberty taken in this
paper; the verbatim output is an ASCII string with C-style
floating-point literals such as [3.14 +/- 1.60e-3].)

A method is also provided for parsing back from a
string. In general, a binary-decimal-binary or decimal-
binary-decimal roundtrip enlarges the interval. However,
conversions in either direction preserve exact midpoints
(such as x = 0.125 with d ≥ 3) whenever possible.

The implementations are simple: interval arithmetic is
used to multiply or divide out exponents, and the actual
radix conversions are performed on big integers, with linear
passes over the decimal strings for rounding and formatting.

6 POLYNOMIALS, POWER SERIES AND MATRICES

Arb provides matrices and univariate polynomials with
an eye toward computer algebra applications. Polynomials
are also used extensively within the library for algorithms
related to special functions.

Matrices come with rudimentary support for linear alge-
bra, including multiplication, powering, LU factorization,

nonsingular solving, inverse, determinant, characteristic
polynomial, and matrix exponential. Most matrix operations
currently use the obvious, naive algorithms (with the excep-
tion of matrix exponentials, details about which are beyond
the scope of this paper). Support for finding eigenvalues is
notably absent, though computing roots of the characteristic
polynomial is feasible if the matrix is not too large.

Polynomials support all the usual operations including
arithmetic, differentiation, integration, evaluation, composi-
tion, Taylor shift, multipoint evaluation and interpolation,
complex root isolation, and reconstruction from given roots.
The polynomial types are also used to represent truncated
power series, and methods are provided for truncated arith-
metic, composition, reversion, and standard algebraic and
transcendental functions of power series.

Arb automatically switches between basecase algorithms
for low degree and asymptotically fast algorithms based
on polynomial multiplication for high degree. For exam-
ple, division, square roots and elementary transcendental
functions of power series use O(n2) coefficient recurrences
for short input and methods based on Newton iteration
that cost O(1) multiplications for long input. Polynomial
composition uses the divide-and-conquer algorithm [30],
and power series composition and reversion use baby-step
giant-step algorithms [31], [32]. Monomials and binomials
are also handled specially in certain cases.

6.1 Polynomial multiplication

Since polynomial multiplication is the kernel of many oper-
ations, it needs to be optimized for both speed and accuracy,
for input of all sizes and shapes.

When multiplying polynomials with interval coeffi-
cients, the O(n2) schoolbook algorithm essentially gives the
best possible error bound for each coefficient in the output
(up to rounding errors in the multiplication itself and under
generic assumptions about the coefficients).

The O(n1.6) Karatsuba and O(n log n) FFT multiplica-
tion algorithms work well when all input coefficients and
errors have the same absolute magnitude, but they can
give poor results when this is not the case. The effect is
pronounced when manipulating power series with decaying
coefficients such as exp(x) =

∑
k x

k/k!. Since the FFT gives
error bounds of roughly the same magnitude for all output
coefficients, high precision is necessary to produce accurate
high-order coefficients. Karatsuba multiplication also effec-
tively adds a term and then subtracts it again, doubling the
initial error, which leads to exponentially-growing bounds
for instance when computing the powers A,A2, A3, . . . of a
polynomial via the recurrence Ak+1 = Ak ·A.

We have implemented a version of the algorithm pro-
posed by van der Hoeven [33] to combine numerical sta-
bility with FFT performance where possible. This rests on
several techniques:

1) Rather than directly multiplying polynomials with
interval coefficients, say A ± a and B ± b where
A, a,B, b ∈ Z[ 12 ][x], we compute AB ± (|A|b +
a(|B|+ b)) using three multiplications of polynomi-
als with floating-point coefficients, where |·| denotes
the per-coefficient absolute value.
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Fig. 1. Transformation used to square exp(x) =
∑

k xk/k! ∈ R[x]/〈xn〉 with n = 104 at p = 333 bits of precision. The original polynomial, shown
on the left, has an effective height of log2(n!) + p ≈ 119 000 bits. Scaling x→ 212x gives the polynomial on the right which is split into 8 blocks of
height at most 1511 bits, where the largest block has a width of 5122 coefficients.

2) (Trimming: bits in the input coefficients that do not
contribute significantly can be discarded.)

3) Scaling: a substitution x→ 2cx is made to give poly-
nomials with more slowly changing coefficients.

4) Splitting: if the coefficients still vary too much,
we write the polynomials as block polynomials,
say A = A0 + xr1A1 + . . . xrK−1AK−1 and B =
B0 + xs1B1 + . . . xsL−1BL−1, where the coefficients
in each block have similar magnitude. The block
polynomials are multiplied using KL polynomial
multiplications. Ideally, we will have K = L = 1.

5) Exact multiplication: we finally use a fast algo-
rithm to multiply each pair of blocks AiBj . In-
stead of using floating-point arithmetic, we compute
2eAiBj ∈ Z[x] exactly using integer arithmetic. The
product of the blocks is added to the output interval
polynomial using a single addition rounded to the
target precision.

For degrees n < 16, we use the O(n2) schoolbook
algorithm. At higher degree, we combine techniques 1 and
3-5 (technique 2 has not yet been implemented). We perform
a single scaling x → 2cx, where c is chosen heuristically by
looking at the exponents of the first and last nonzero coef-
ficient in both input polynomials and picking the weighted
average of the slopes (the scaling trick is particularly effec-
tive when both A and B are power series with the same
finite radius of convergence). We then split the inputs into
blocks of height (the difference between the highest and
lowest exponent) at most 3p+ 512 bits, where p is the target
precision. The scaling and splitting is illustrated in Figure 1.

The exact multiplications in Z[x] are done via FLINT.
Depending on the input size, FLINT in turn uses the school-
book algorithm, Karatsuba, Kronecker segmentation, or a
Schönhage-Strassen FFT. The latter two algorithms have
quasi-optimal bit complexity Õ(np).

For the multiplications |A|b and a(|B| + b) involving
radii, blocks of width n < 1000 are processed using school-
book multiplication with hardware double arithmetic. This
has less overhead than working with big integers, and
guaranteeing correct and accurate error bounds is easy since
all coefficients are nonnegative.

Our implementation follows the principle that polyno-
mial multiplication always should give error bounds of the

same quality as the schoolbook algorithm, sacrificing speed
if necessary. As a bonus, it preserves sparsity (e.g. even or
odd polynomials) and exactness of individual coefficients.

In practice, it is often the case that one needs O(n)
bits of precision to compute with degree-n polynomials
and power series regardless of the multiplication algorithm,
because the problems that lead to such polynomials are
inherently ill-conditioned. In such cases, a single block will
typically be used, so the block algorithm is almost as fast
as a “lossy” FFT algorithm that discards information about
the smallest coefficients. On the other hand, whenever low
precision is sufficient with the block algorithm and a “lossy”
FFT requires much higher precision for equivalent output
accuracy, the “lossy” FFT is often even slower than the
schoolbook algorithm.

Complex multiplication is reduced to four real multipli-
cations in the obvious way. Three multiplications would
be sufficient using the Karatsuba trick, but this suffers
from the instability problem mentioned earlier. Karatsuba
multiplication could, however, be used for the exact stage.

6.2 Polynomial multiplication benchmark

Enge’s MPFRCX library [34] implements univariate poly-
nomials over MPFR and MPC coefficients without con-
trol over the error. Depending on size, MPFRCX performs
polynomial multiplication using the schoolbook algorithm,
Karatsuba, Toom-Cook, or a numerical FFT.

Table 5 compares MPFRCX and Arb for multiplying
real and complex polynomials where all coefficients have
roughly the same magnitude (we use the real polynomials
f =

∑n−1
k=0 x

k/(k + 1), g =
∑n−1
k=0 x

k/(k + 2) and complex
polynomials with similar real and imaginary parts). This
means that MPFRCX’s FFT multiplication computes all co-
efficients accurately and that Arb can use a single block.

The results show that multiplying via FLINT gener-
ally performs significantly better than a numerical FFT
with high-precision coefficients. MPFRCX is only faster for
small n and very high precision, where it uses Toom-Cook
while Arb uses the schoolbook algorithm.

Complex coefficients are about four times slower than
real coefficients in Arb (since four real polynomial multi-
plications are used) but only two times slower in MPFRCX
(since a real FFT takes half the work of a complex FFT).
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TABLE 5
Time in seconds to multiply polynomials of length n with p-bit

coefficients having roughly unit magnitude.

Real Complex
n p MPFRCX Arb MPFRCX Arb
10 100 1.3e-5 6.9e-6 6.4e-5 3.5e-5
10 1000 3.1e-5 2.1e-5 1.8e-4 9.4e-5
10 104 3.6e-4 4.4e-4 0.0015 0.0021
10 105 0.0095 0.012 0.034 0.055
100 100 6.0e-4 1.3e-4 0.0020 5.6e-4
100 1000 0.0012 4.5e-4 0.0042 0.0019
100 104 0.012 0.0076 0.043 0.031
100 105 0.31 0.11 0.98 0.42
103 100 0.015 0.0022 0.025 0.0091
103 1000 0.029 0.0061 0.049 0.026
103 104 0.36 0.084 0.59 0.34
103 105 9.3 1.2 16 4.4
104 100 0.30 0.034 0.55 0.14
104 1000 0.63 0.19 1.1 0.82
104 104 8.0 1.2 14 4.6
104 105 204 13 349 50
105 100 2.9 0.54 5.4 2.0
105 1000 6.3 2.5 11 10
105 104 77 23 142 96
106 100 553 6.3 1621 23
106 1000 947 28 3311 103

A factor two could theoretically be saved in Arb’s com-
plex multiplication algorithm by recycling the integer trans-
forms, but this would be significantly harder to implement.

We show one more benchmark in Table 6. Define

fn = x(x− 1)(x− 2) · · · (x− n+ 1) =
n∑
k=0

s(n, k)xk.

Similar polynomials appear in series expansions and in
manipulation of differential and difference operators. The
coefficients s(n, k) are the Stirling numbers of the first
kind, which fall off from size about |s(n, 1)| = (n − 1)!
to s(n, n) = 1. Let P = maxk log2 |s(n, k)| + 64. Using a
tree (binary splitting) to expand the product provides an
asymptotically fast way to generate s(n, 0), . . . , s(n, n). We
compare expanding fn from the linear factors using:

• FLINT integer polynomials, with a tree.
• MPFRCX, at 64-bit precision multiplying out one

factor at a time, and at P -bit precision with a tree.
• Arb, one factor at a time at 64-bit precision, and

then at 64-bit precision and exactly (using ≥ P -bit
precision) with a tree.

Multiplying out iteratively one factor at a time is numeri-
cally stable, i.e. we get nearly 64-bit accuracy for all coeffi-
cients with both MPFRCX and Arb at 64-bit precision. Using
a tree, we need P -bit precision to get 64-bit accuracy for the
smallest coefficients with MPFRCX, since the error in the
FFT multiplication depends on the largest term. This turns
out to be slower than exact computation with FLINT, in part
since the precision in MPFRCX does not automatically track
the size of the intermediate coefficients.

With Arb, using a tree gives nearly 64-bit accuracy
for all coefficients at 64-bit precision, thanks to the block

TABLE 6
Time in seconds to expand falling factorial polynomial.

n FLINT MPFRCX MPFRCX Arb Arb Arb
exact, 64-bit, P -bit, 64-bit 64-bit, exact,
tree iter. tree iter. tree tree

10 4.8e-7 1.8e-5 1.8e-5 4.6e-6 2.7e-6 2.7e-6
102 1.2e-4 1.1e-3 9.0e-4 4.8e-4 2.0e-4 2.4e-4
103 0.030 0.10 0.35 0.049 0.0099 0.032
104 5.9 10 386 4.8 0.85 5.9
105 1540 515 85
106 8823

multiplication algorithm. The multiplication trades speed
for accuracy, but when n� 102, the tree is still much faster
than expanding one factor at a time. At the same time, Arb
is about as fast as FLINT for exact computation when n is
large, and can transition seamlessly between the extremes.
For example, 4096-bit precision takes 1.8 s at n = 104 and
174 s at n = 105, twice that of 64-bit precision.

6.3 Power series and calculus

Automatic differentiation together with fast polynomial
arithmetic allows computing derivatives that would be hard
to reach with numerical differentiation methods. For exam-
ple, if f1 = exp(x), f2 = exp(exp(x)), f3 = Γ(x), f4 = ζ(x),
Arb computes {f (i)k (0.5)}1000i=0 to 1000 digits in 0.0006, 0.2,
0.6 and 1.9 seconds respectively.

Series expansions of functions can be used to carry out
analytic operations such as root-finding, optimization and
integration with rigorous error bounds. Arb includes code
for isolating roots of real analytic functions using bisection
and Newton iteration. To take an example from [16], Arb iso-
lates the 6710 roots of the Airy function Ai(x) on [−1000, 0]
in 0.4 s and refines all roots to 1000 digits in 16 s.

Arb also includes code for integrating complex analytic
functions using the Taylor method, which allows reaching
100 or 1000 digits with moderate effort. This code is in-
tended more as an example than for serious use.

7 CONCLUSION

We have demonstrated that midpoint-radius interval arith-
metic can be as performant as floating-point arithmetic in an
arbitrary-precision setting, combining asymptotic efficiency
with low overhead. It is also often easier to use. The effi-
ciency compared to non-interval software is maintained or
even improves when we move from basic arithmetic to some
higher operations such as evaluation of special functions
and polynomial manipulation, since the core arithmetic
enables using advanced algorithms for such tasks.

There is currently no accepted standard for how
midpoint-radius interval arithmetic should behave. In Arb,
we have taken a pragmatic approach which seems to work
very well in practice. Arguably, fine-grained determinism
(e.g. bitwise reproducible rounding for individual arith-
metic operations) is much less important in interval arith-
metic than in floating-point arithmetic since the quality of an
interval result can be validated after it has been computed.
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This opens the door for many optimizations. Implementing
algorithms that give better error bounds efficiently can itself
be viewed as a performance optimization, and should be
one of the points for further study.

The arb_t type is designed to support arbitrary pre-
cision well, using a standard C library interface. These
constraints make it hard to apply certain optimizations,
such as SIMD vectorization or use of double-double arith-
metic which are known to give vast speedups over classical
bignum arithmetic at a fixed precision. Some operations (e.g.
matrix and polynomial multiplication) could be accelerated
significantly in certain precision ranges by converting to
more streamlined data formats. See [35], [36], [37].
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