W. Tucker, Validated numerics: a short introduction to rigorous computations, 2011.

T. C. Hales, J. Harrison, S. Mclaughlin, T. Nipkow, S. Obua et al., A revision of the proof of the Kepler conjecture, The Kepler Conjecture, pp.341-376, 2011.

H. A. Helfgott, The ternary Goldbach problem, 2015.

W. Tucker, A Rigorous ODE Solver and Smale???s 14th Problem, Foundations of Computational Mathematics, vol.2, issue.1, pp.53-117, 2002.
DOI : 10.1007/s002080010018

N. Revol and F. Rouillier, Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library, Reliable Computing, vol.2, issue.3, pp.275-290, 2005.
DOI : 10.1007/s11155-005-6891-y

URL : https://hal.archives-ouvertes.fr/inria-00544998

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, pp.1-13, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00103655

A. Enge, P. Théveny, and P. Zimmermann, MPC: a library for multiprecision complex arithmetic with exact rounding, 2011.

J. Van-der-hoeven, Ball arithmetic, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432152

J. Van-der-hoeven, G. Lecerf, B. Mourrain, P. Trébuchet, J. Berthomieu et al., Mathemagix, Computability and Complexity in Analysis, pp.186-188, 2001.
DOI : 10.1145/2110170.2110180

URL : https://hal.archives-ouvertes.fr/hal-00771214

D. H. Bailey and J. M. Borwein, High-Precision Arithmetic in Mathematical Physics, Mathematics, vol.3, issue.2, pp.337-367, 2015.
DOI : 10.3390/math3020337

F. Johansson, Efficient Implementation of Elementary Functions in the Medium-Precision Range, 2015 IEEE 22nd Symposium on Computer Arithmetic, pp.83-89, 2015.
DOI : 10.1109/ARITH.2015.16

URL : https://hal.archives-ouvertes.fr/hal-01079834

W. B. Hart, Fast Library for Number Theory: An Introduction, Proceedings of the Third international congress conference on Mathematical software, ser. ICMS'10, pp.88-91, 2010.
DOI : 10.1007/978-3-642-15582-6_18

N. Nethercote and J. Seward, Valgrind: a framework for heavyweight dynamic binary instrumentation, ACM Sigplan notices, pp.89-100, 2007.

F. Johansson, Abstract, LMS Journal of Computation and Mathematics, vol.6, pp.341-359, 2012.
DOI : 10.2307/2371532

A. Enge, A. Bucur, A. M. Ernvall-hytönenhyt¨hytönen, A. Od?ak, and L. Smajlovi´csmajlovi´c, The complexity of class polynomial computation via floating point approximations On a Li-type criterion for zero-free regions of certain Dirichlet series with real coefficients, Mathematics of Computation LMS Journal of Computation and Mathematics, vol.78, issue.19 1, pp.1089-1107, 2009.

G. Beliakov and Y. Matiyasevich, Zeros of Dirichlet L-functions on the critical line with the accuracy of 40000 decimal places, 2014.

F. Johansson, mpmath: a Python library for arbitrary-precision floating-point arithmetic, 2015.

W. B. Hart and A. Novocin, Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic, Computer Algebra in Scientific Computing, pp.200-214, 2011.
DOI : 10.1007/978-3-642-23568-9_16

URL : https://hal.archives-ouvertes.fr/hal-00650389

R. P. Brent and H. T. Kung, Fast Algorithms for Manipulating Formal Power Series, Journal of the ACM, vol.25, issue.4, pp.581-595, 1978.
DOI : 10.1145/322092.322099

F. Johansson, A fast algorithm for reversion of power series, Mathematics of Computation, vol.84, issue.291, pp.475-484, 2015.
DOI : 10.1090/S0025-5718-2014-02857-3

J. Van-der-hoeven, Making fast multiplication of polynomials numerically stable, 2008.

A. Enge, MPFRCX: a library for univariate polynomials over arbitrary precision real or complex numbers, 2012.