W. Tucker, Validated numerics: a short introduction to rigorous computations, 2011.

T. C. Hales, J. Harrison, S. Mclaughlin, T. Nipkow, S. Obua et al., A revision of the proof of the Kepler conjecture, The Kepler Conjecture, pp.341-376, 2011.

H. A. Helfgott, The ternary Goldbach problem, 2015.

W. Tucker, A Rigorous ODE Solver and Smale???s 14th Problem, Foundations of Computational Mathematics, vol.2, issue.1, pp.53-117, 2002.
DOI : 10.1007/s002080010018

N. Revol and F. Rouillier, Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library, Reliable Computing, vol.2, issue.3, pp.275-290, 2005.
DOI : 10.1007/978-3-7091-8577-3_15

URL : https://hal.archives-ouvertes.fr/inria-00072090

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, pp.1-13, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00103655

A. Enge, P. Théveny, and P. Zimmermann, MPC: a library for multiprecision complex arithmetic with exact rounding, 2011.

K. Makino and M. Berz, Taylor models and other validated functional inclusion methods, International Journal of Pure and Applied Mathematics, vol.4, issue.4, pp.379-456, 2003.

J. Van-der-hoeven, Ball arithmetic, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432152

J. Van-der-hoeven, G. Lecerf, B. Mourrain, P. Trébuchet, J. Berthomieu et al., Mathemagix, ACM Communications in Computer Algebra, vol.45, issue.3/4, pp.186-188, 2012.
DOI : 10.1145/2110170.2110180

URL : https://hal.archives-ouvertes.fr/hal-00771214

G. Lecerf, Mathemagix: towards large scale programming for symbolic and certified numeric computations The iRRAM: Exact arithmetic in C++, International Congress on Mathematical Software Computability and Complexity in Analysis, pp.329-332, 2001.

D. H. Bailey and J. M. Borwein, High-Precision Arithmetic in Mathematical Physics, Mathematics, vol.7133, issue.2, pp.337-367, 2015.
DOI : 10.1007/978-3-642-28151-8_25

URL : http://www.mdpi.com/2227-7390/3/2/337/pdf

F. Johansson, Efficient Implementation of Elementary Functions in the Medium-Precision Range, 2015 IEEE 22nd Symposium on Computer Arithmetic, pp.83-89, 2015.
DOI : 10.1109/ARITH.2015.16

URL : https://hal.archives-ouvertes.fr/hal-01079834

W. B. Hart, Fast Library for Number Theory: An Introduction, Proceedings of the Third international congress conference on Mathematical software, ser. ICMS'10, pp.88-91, 2010.
DOI : 10.1007/978-3-642-15582-6_18

URL : http://wrap.warwick.ac.uk/41629/1/WRAP_Hart_0584144-ma-270913-flint-extended-abstract.pdf

N. Nethercote and J. Seward, Valgrind: a framework for heavyweight dynamic binary instrumentation, ACM Sigplan notices, pp.89-100, 2007.

F. Johansson, Abstract, LMS Journal of Computation and Mathematics, vol.6, pp.341-359, 2012.
DOI : 10.2307/2371532

A. Enge, The complexity of class polynomial computation via floating point approximations, Mathematics of Computation, vol.78, issue.266, pp.1089-1107, 2009.
DOI : 10.1090/S0025-5718-08-02200-X

URL : https://hal.archives-ouvertes.fr/inria-00001040

A. Bucur, A. M. Ernvall-hytönenhyt¨hytönen, A. Od?ak, and L. Smajlovi´csmajlovi´c, On a Li-type criterion for zero-free regions of certain Dirichlet series with real coefficients, LMS Journal of Computation and Mathematics, vol.24, issue.01, pp.259-280, 2016.
DOI : 10.1016/j.jnt.2015.03.019

G. Beliakov and Y. Matiyasevich, Zeros of Dirichlet L-functions on the critical line with the accuracy of 40000 decimal places, 2014.

F. Johansson, mpmath: a Python library for arbitrary-precision floating-point arithmetic, 2015.

W. B. Hart and A. Novocin, Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic, Computer Algebra in Scientific Computing, pp.200-214, 2011.
DOI : 10.1007/978-1-4612-0129-8

URL : https://hal.archives-ouvertes.fr/hal-00650389

R. P. Brent and H. T. Kung, Fast Algorithms for Manipulating Formal Power Series, Journal of the ACM, vol.25, issue.4, pp.581-595, 1978.
DOI : 10.1145/322092.322099

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=2520&context=compsci

F. Johansson, A fast algorithm for reversion of power series, Mathematics of Computation, vol.84, issue.291, pp.475-484, 2015.
DOI : 10.1090/S0025-5718-2014-02857-3

J. Van-der-hoeven, Making fast multiplication of polynomials numerically stable, 2008.

A. Enge, MPFRCX: a library for univariate polynomials over arbitrary precision real or complex numbers, 2012.

J. Van-der-hoeven and G. Lecerf, Faster FFTs in medium precision, Computer Arithmetic (ARITH), 2015 IEEE 22nd Symposium on. IEEE, pp.75-82, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01081743

J. M. Muller, V. Popescu, and P. T. Tang, A New Multiplication Algorithm for Extended Precision Using Floating-Point Expansions, 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), pp.39-46, 2016.
DOI : 10.1109/ARITH.2016.18

URL : https://hal.archives-ouvertes.fr/hal-01298195