
HAL Id: hal-01394263
https://inria.hal.science/hal-01394263

Preprint submitted on 9 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

A theory of reflexive computation based on soft
intuitionistic logic

Hubert Godfroy, Jean-Yves Marion

To cite this version:
Hubert Godfroy, Jean-Yves Marion. A theory of reflexive computation based on soft intuitionistic
logic. 2016. �hal-01394263�

https://inria.hal.science/hal-01394263
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

A theory of reflexive computation based on soft
intuitionistic logic

Hubert Godfroy and Jean-Yves Marion

Université de Lorraine, CNRS, LORIA, UMR 7503, Vandoeuvre-lés-Nancy, F-54506,
France

Hubert.Godfroy@loria.fr and Jean-Yves.Marion@loria.fr

Abstract. Computational Reflection is a paradigm in which the compu-
tational mechanisms controls the different levels of data interpretation.
It can be decomposed into two processes: (i) reification, which turns a
program into a data and (ii) reflection, which, inversely, installs a data as
a program or a context in order to be run. We present a logical account
of reflection based on a confluent lambda-calculus. We define two type
assignment systems called Soft Intuitionistic Logic (SIL) and Intuition-
istic Logic with Promotion (PIL) in which we introduce the exponential
modality ! of linear logic. The duality between reification and reflection
is to be found in the soft-promotion rule in SIL (resp. in the promotion
rule in PIL) and in the dereliction rule. We also show that SIL (or PIL)
is a framework in which partial evaluation can be efficiently performed.
Finally, we add a control operator, which reifies its evaluation context.
Thus a program may have full control of its computational state. We
extend the type system with classical logic and semantics is provided
by Krivine abstract machine. We establish the soundness of our type
system.

1 Introduction

Nowadays, it is common that programs are protected against reverse engineering.
One of predominant software protections is the use of packers. Viruses, and more
generally malware, incorporate such protections. The run of a packer may be seen
as a sequence of code waves. The first wave contains the initial code, which is
going to create a second code wave by decrypting or decompressing a data. Then
the second code wave in turn will create a third wave, . . . and it is not uncommon
to see packers that deploy more than 100 waves. A packer is a typical example of
a self-modifying program. Another example of a self-modifying program is a Just-
in-Time Compiler. A self-modifying program is a program that can modify its
own code and that can generate on the fly new codes. Self-modifying programs
are inherent to computability. This notion goes back to the second recursion
Theorem of Kleene [8, 15]. The article [12] explains the relationship between
self-modifying programs and Kleene’s amazing construction.

This notion of self-modification is closely related to computational reflec-
tion. The intuition behind is that code may be transformed into data, which is

2 H. Godfroy and J. -Y.Marion

named reification, and inversely a data can be transformed into a code, which is
named reflection. Computational reflection is an important tool in programming
language theory. It is the foundation of meta-programming and of Futamura
projections [7] (in which an interpreter is specialized to define a compiler). We
will show how our framework can be applied to partial evaluation.

Our motivation is that we seek a paradigmatic reflexive type language based
on lambda-calculus. As self-modifying programs become more widely used, it
is increasingly important to have a better understanding of the notions that
underpinned them. We begin with the definition of a confluent lambda calculus
ΛR in which reification and reflection are incorporated. Then, we present a type
system SIL, which is sound with respect to ΛR semantics. The type system
SIL is based on intuitionistic logic with the exponential modality !. Implicit
computational complexity, and in particular the work of Lafont [11] on Soft
Linear Logic, has provided insight on exponential rules. The type system SIL
uses the soft promotion rule to build a quoted term, that is to reify an expression.
It follows that the dereliction rule amounts to a reflection principle, that is it
allows to run a quoted term. Then, we will also see that the soft promotion
rule can be replaced by the promotion rule. It turns out that the type system,
named PIL, with promotion is equivalent to the system based on modal logic
of Davis and Pfenning designed to deal with staged computation [3]. We will
also see that we can define a fixpoint that captures the essence of Kleene second
recursion theorem and thus define a quine.

Finally, the last section explore the ability of a reflexive program to have
access to the computational states that is to have access to both evaluation
contexts and current expressions, that are represented as data. To this end, we
define a typed lambda calculus SIL∗ with a control operator (call/cc), which gives
access to the reification of the current continuation. The operational semantics
is conveyed by the Krivine abstract machine[10]. The type system is built on the
algorithmic understanding of classical logic by Griffin [5] and Krivine [9].

The design of typed reflexive λ-calculi is a quite unexplored research line,
and so exploring different approaches is interesting. There are two other logical
frameworks developed to study staged computation. Taha and his co-authors use
Temporal logic [2] with ‘next t” and “prev t” markers and type constructor©A
statement is true for the next stage. A Caml implementation [20] is available.
Davis, Pfenning and their co-authors in a series of papers, see [3] and [16],
use modal logic to syntactically describe frozen terms, that is, closed values
which remains to be evaluated. In this framework data are terms of the form
box(t) : �A and are in normal form. As we have already said, our study is closed
of their works and have been a source of inspiration.

2 Reflection in lambda-calculus

We now present the paradigmatic reflexive language ΛR. In order to modeling
reflection in lambda-calculus, we add two operations that we call reification and
reflection. Reification converts a term t into a quoted term 〈t〉. The intuition is

A theory of reflexive computation based on soft intuitionistic logic 3

that quoted terms represent data and so they cannot be reduced. A quoted term
〈t〉 may be the abstract syntax tree (AST) of t overs the domain of lists or a
string contains an encryption of the AST of t. In this case, the intuition is that
run will decrypt 〈t〉 before running it. The process of converting a reified value
〈t〉 into a term, which may be then executed, is called reflection. The reflection
operator is provided by the construction let〈x〉 = t′ in t. The intention is that
let〈x〉 = 〈s〉 in t reduces to t[x← s]. Thus, the term run defined below executes
a reified term by unquoting a quoted term and run〈s〉 evaluates to s

run
def

= λy. let〈x〉 = y in x

The set of expressions of ΛR is defined by the following grammar:

ΛR ∋ t
def

= x | t t | λx.t | 〈t〉 | let〈x〉 = t in t

All along, we will say that quoted terms are expressions of the form 〈t〉. In
contrast, terms will denote expressions which are not quoted. Expressions refer
collectively to both terms and unquoted terms.

That said, if we are not careful, the system may not be confluent. Indeed,
consider the expression (λx.〈x〉)((λz.a)λy.y). It could be reduced to either 〈a〉
or 〈(λz.a)(λy.y)〉, which are both in normal form. One way to fix the problem is
to say that quoted terms are not affected by λ-binders. That is, the variable x in
λx.〈λy.xy〉 should be free while y is bound. Thereby, the term (λx.〈x〉)t should
return 〈x〉 because the occurrence of x in 〈x〉 is free inside λx.〈x〉. Similarly,
the term λx. run〈x〉 should reduce to λy.x. That is why, the let construction
is necessary because it ensures that variables in a quoted term are correctly
bounded.

The set of free variables should be carefully defined in order to avoid to
capture free variables in quoted terms. Notice that unlike lambda binders, a let
bound variable can capture variable in terms as well as in quoted terms. The set
of free variables is achieved by defining mutually both the set of free variables in
(unquoted) terms (FVλ) and the set of free variables inside quoted terms (FVlet)
as follows:

FVλ(x) = {x}
FVλ(λx.t) = FVλ(t) \ x
FVλ(t1 t2) = FVλ(t1) ∪ FVλ(t2)
FVλ(〈t〉) = ∅

FVλ(let〈x〉 = t in t′) = FVλ(t) ∪ (FVλ(t′) \ x)

FVlet(x) = ∅
FVlet(λx.t) = FVlet(t)
FVlet(t1 t2) = FVlet(t1) ∪ FVlet(t2)
FVlet(〈t〉) = FVλ(t) ∪ FVlet(t)

FVlet(let〈x〉 = t in t′) = FVlet(t) ∪ (FVlet(t′) \ x)

4 H. Godfroy and J. -Y.Marion

As a result, the set of free variables of an term t is FV(t) = FVλ(t) ∪ FVlet(t).

To illustrate this definition, let us consider the term t
def

= (λx. run f〈x〈λy.y〉〉).
We have FV(t) = FVλ(t) ∪ FVlet(t) = {f} ∪ {x}.

From now on, we work as usual with terms up to renaming of bound variables,
that is up to alpha-conversion. This means that the name of lambda bound
variables and the name of let bound variables can be changed to avoid the capture
of free variable names wrt FV definition. For example let〈x〉 = z in λx.x〈x〉 is
alpha-equivalent to let〈x1〉 = z in λx2.x2〈x1〉. The operation of substitution is
then defined thus:

x[x← s] = s

y[x← s] = y y 6= x

(λy.t)[x← s] = λy.t[x← s] y 6= x and y 6∈ FV(s)

(tt′)[x← s] = t[x← s]t′[x← s]

(let〈y〉 = t in t′)[x← s] = let〈y〉 = t[x← s] in t′[x← s] y 6= x and y 6∈ FV(s)

〈t〉[x← s] = 〈t[x← s]〉

Reduction rules are based on the contraction of λ-redexes and let-redexes:

(λx.t)t′
λ
→ t[x← t′]

let〈x〉 = 〈t′〉 in t
let
→ t[x← t′]

The set of evaluation contexts of ΛR expressions is defined as follows:

E
def

= [] | E t | t E | λx.E | let〈x〉 = E in t | let〈x〉 = t in E

and reduction rules are extended under contexts as usual:

t
λ
→ t′

E[t]
λ
→ E[t′]

t
let
→ t′

E[t]
let
→ E[t′]

Finally, we define →=
λ
→ ∪

let
→. The reflexive and transitive closure of → is

denoted
∗

→.
It is important to notice that for any context E, 〈E〉 is not a context. There-

fore, it is not possible to reduce a quoted term. This is what is expected since
〈t〉 is intuitively a data and not a program.

We end by two examples that illustrates two features of the let construction.
As we have already said, the let construction allows to unquote an expression.
Let us return to the expression run. It allows to execute a quoted term 〈t〉:

run〈t〉 → (λx. let〈y〉 = x in y)〈t〉 → let〈y〉 = 〈t〉 in y → t

In turn, t may be executed. The second example illustrates how a variable, which
is bound by let, may be replaced in a quoted term.

let〈x〉 = (λx.x)〈s〉 in (λxy.y) 〈(λy.y)x〉 〈x〉 → let〈x〉 = 〈s〉 in (λxy.y) 〈(λy.y)x〉 〈x〉

→ (λxy.y) 〈(λy.y)s〉 〈s〉

→ 〈s〉

A theory of reflexive computation based on soft intuitionistic logic 5

The computation ends because 〈s〉 is a quoted term. Notice that the reduction of
the top redex (with let-binder) is blocked until (λx.x)〈s〉 is reduced to a quoted
term.

2.1 Confluence

We now state the fact that the system (ΛR,→) is confluent. Intuitively, the key
point is that variables in quoted terms are not captured by outside λ-binders.
For example, (λx. let〈y〉 = x in 〈y〉) ((λx.〈a〉)λx.x) reduces to 〈a〉 because the let
construction forces to evaluate its first argument (λx.〈a〉)λx.x and then performs
a let reduction.

Theorem 1. (ΛR,→) is confluent. That is, if t
∗

→ t′ and t
∗

→ t′′ then there is

an term s such that t′
∗

→ s and t′′
∗

→ s.

We decompose the system (ΛR,→) into two systems (ΛR,
λ
→) and (ΛR,

let
→) in

order to show its confluence. We then prove separately that (ΛR,
λ
→) and (ΛR,

let
→)

are confluent and that both systems commute. By Hindley-Rosen Lemma [17,

6], we conclude that (ΛR,→) = (ΛR,
λ
→ ∪

let
→) is confluent.

Property 1 The reduction rule (ΛR,
λ
→) is confluent.

Proof. λ-binders cannot bind variables in quoted terms. Then, without reduction

of let-binders, boxed terms are unchangeable. So, (ΛR,
λ
→) is confluent because

it is like pure λ-calculus with constants.

Property 2 If t
let
→ t′ and t

let
→ t′′ then there is an term s such that t′

let
→ s and

t′′
let
→ s. As a result, (ΛR,

let
→) is confluent

Proof. Assume that t contains two let-redexes R and S. Suppose that R is
let〈x〉 = 〈s〉 in s′ and that we reduce R. There is only one residual of S with
respect to R. Indeed, assume that S is a sub-term of R. S can not be a sub-term
of 〈s〉. So S is necessarily a sub-term of s′ and so S is not duplicated. The other
cases are similar. Since there is no duplication of residuals of S with respect to
R, we can indifferently reduce R and S, or the inversely reduce S and R.

Property 3 Reduction rules
λ
→ and

let
→ commute. That is if t

λ
→

∗

t′ and t
let
→

∗

t′′, there is t′ such that t′
let
→

∗

s and t′′
λ
→

∗

s.

Proof. The reduction of a let-redex does not duplicate (unquoted) λ-redexes.
Inversely, the reduction of a λ-redex may create several copies of a let-redex.

Therefore, if t
λ
→ t′ and t

let
→ t′′, then it exists s such that t′

∗ let
→ s and t′′

λ
→ s.

As a consequence,
λ
→ and

let
→ commute.

6 H. Godfroy and J. -Y.Marion

3 Soft Intuitionistic Logic (SIL)

3.1 Typing reflection

We present a deductive system that we call Soft Intuitionistic Logic (SIL), which
is a type assignment system for a proper subset of ΛR terms. The system is con-
structed from Intuitionistic Logic to which we add the modality ! that amounts
to the exponential modality of Linear Logic.

The types are defined as follows where α ranges over base types:

Types ∋ A
def

= α | A→ B | !A

The rules of SIL are shown in Figure 1 and are given in sequent calculus
style. The assumptions have the form p1 : A1, . . . , pn : An where each pi is a
pattern. A pattern is either a variable x or a quoted variable of the form 〈x〉
where x is a variable. Note that there is no nested quoted variables. A context is
a set of assumptions where all patterns are different. The domain of Γ is defined
by dom(Γ) = {x | (x : A) ∈ Γ} ∪ {x | (〈x〉 : A) ∈ Γ}. Contexts range over Γ , ∆.

Axiom

x : A ⊢ x : A

Weakening
Γ ⊢ t : B

Γ, p : A ⊢ t : B

Contraction 1
Γ, y : A, z : A ⊢ t : C

Γ, x : A ⊢ t[y ← x][z ← x] : C

Contraction 2
Γ, 〈y〉 :!A, 〈z〉 :!A ⊢ t : C

Γ, 〈x〉 :!A ⊢ t[y ← x][z ← x] : C

→Left
Γ, x : B ⊢ t : C ∆ ⊢ t

′ : A

Γ,∆, f : A→ B ⊢ t[x← f t
′] : C

→Right
Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B

SoftPromotion
x1 : A1, · · · , xn : An ⊢ t : B

〈x1〉 :!A1, · · · , 〈xn〉 :!An ⊢ 〈t〉 :!B

Dereliction
Γ, x : A ⊢ t : B

Γ, 〈x〉 :!A ⊢ t : B

Cut
Γ ⊢ t

′ : A ∆, x : A ⊢ t : B

Γ,∆ ⊢ t[x← t
′] : B

Let
Γ, 〈x〉 :!A ⊢ t : B

Γ, y :!A ⊢ let〈x〉 = y in t : B

Fig. 1. Type assignment system SIL.

Take the expression run previously defined. We can see that the type of
run is !A → A. Likewise, the expression λfλx. let〈s〉 = f in let〈t〉 = x in 〈st〉,

A theory of reflexive computation based on soft intuitionistic logic 7

which takes a quoted function f and a quoted argument x and re-quotes their
application, is of type !(A→ B)→!A→!B.

The soft promotion rule allows to reify a term t. That is, the soft promotion
rule constructs a term 〈t〉 of type !A. Simultaneously, the soft-promotion also
quotes all variables in the context, and thus all variables occurring in a quoted
terms are marked. The soft promotion rule is inspired by Soft Linear Logic of
Lafont [11] using proof nets and by both typed systems defined in Baillot & al.
[1] and by Gaboardi & al. [4], which characterized exactly Ptime computations.
The multiplexing rule of Soft Linear Logic is meaningless in SIL since there is a
contraction rule. The elimination rule for the modality ! is the dereliction rule.
It corresponds to a reflective process by turning a quoted terms (aka data) into
a term (aka programs). Quoted variables are never bound by a λ but by a let

construction. That said, the let rule allows on one hand to use a quoted-variable
and on the other hand to introduce a new variable y of modal type (i.e. of type
!A), which may be then bound by a λ. The let rule is like a border, which waits
for a quoted term in order to make a substitution.

The type assignment systems for λ-calculus derived from Linear Logic have
to be carefully design in order to be coherent. Indeed, a same λ-term may have
different proofs. Thus, in the type assignment system STA of [4] based on Soft
Liner Logic, the cut rule is restricted to non-modal types. Similarly, the sequent
calculus for Linear Logic of Wadler in [21] has a let rule to deal with the fact
that the cut rule and the promotion rule introduce incoherence. It is clear that
the system SIL inherits of these difficulties and the proposed solutions.

3.2 Correctness of SIL

The following properties show that SIL is correct with respect to (i) the manage-
ment of free and bounded variables of ΛR, which guarantees that the calculus is
confluent and (ii) that the typing is preserved during computations.

Property 4

1. If Γ ⊢ t : A, then FV(t) ⊆ dom(Γ).
2. If Γ ⊢ t : A and x ∈ FVlet(t) then there is B such that 〈x〉 :!B ∈ Γ

Proof. By induction on t.

Notice that if x ∈ FVλ(t), then x : B is not necessarily in Γ because of
Dereliction rule: 〈x〉 :!B ⊢ x : B. The property of substitution is expressed

thus:

Lemma 1 (Substitution).

1. If Γ ⊢ t′ : A and Γ, x : A ⊢ t : B, then Γ ⊢ t[x← t′] : B
2. If Γ ⊢ 〈t′〉 :!A and Γ, 〈x〉 :!A ⊢ t : B then Γ ⊢ t[x← t′] : B

Proof. The proofs are in both cases by induction on t.

Finally, we get the main result which is the soundness of the type system.

Theorem 1 (Subject reduction) If Γ ⊢ t : A and t→ t′ then Γ ⊢ t′ : A.

Proof. By induction on the reduction context E.

8 H. Godfroy and J. -Y.Marion

4 Intuitionistic Logic with Promotion (PIL)

4.1 Promotion

We present PIL, for Intuitionistic Logic with Promotion, which is the system
SIL in which the Soft Promotion Rule is replaced by the Promotion rule given
below:

Promotion
〈x1〉 :!A1, · · · , 〈xn〉 :!An ⊢ t : B

〈x1〉 :!A1, · · · , 〈xn〉 :!An ⊢ 〈t〉 :!B

PIL is a proper extension of SIL, that is SIL (PIL. Typically, the term λy :
!A let〈x〉 = y in 〈〈x〉〉 of type !A→!!A is derivable in PIL but it is not derivable
in SIL. This is due to the fact that the digging rule (i.e. !A→!!A) is not derivable
in SIL.

In [3], Davis and Pfenning present a nice type system based on intuitionistic
modal logic S4 for studying staged computation. They introduce a modal type
constructor � which plays the same role that !. Their system is based on sequents
with two contexts ∆;Γ ⊢e t : A where ∆ is the modal context and Γ is a
non-modal context. Actually, the system PIL based on the promotion rule is
equivalent to Davis and Pfenning system.

Theorem 2 ∆;Γ ⊢e t : A is derivable iff ∆̃, Γ ⊢ t : A in PIL, where ∆̃ =
{〈x〉 :!A | x : �A ∈ ∆}.

This result is not surprising since it is known at least from the works of Schellinx [18]
and of Martini and Masini [13] that S4 modal logic can be translated into linear
logic.

4.2 A reflexive fixpoint

The system PIL allows to define an interesting reflexive fixpoint Z as follows :

Z〈t〉
Z
→ t 〈Z〈t〉〉

The type of Z is !(!A → A) → A. Now, we may express the spirit of Kleene’s
second recursion Theorem. Recall the intuition. A quoted term is a data. So a
function takes as input a data and so it should be defined by an expression of

type !A → A. Now, each expression p of type !A → A has a fixpoint e
def

= Z〈p〉.
Indeed, p〈e〉 ∼ e where ∼means that both expressions has the same normal form
or both diverge. We see that each partial function denoted by an expression of
type !A→ A has a fixpoint 〈e〉. It follows that we can define a self-reproducible
expression. For this, let p be λx. let〈y〉 = x in y and let q be the fixpoint of p.
We have that the expression q reduces to q, that is q outputs and runs itself.

A theory of reflexive computation based on soft intuitionistic logic 9

5 Staging transformation

5.1 A reflexive typed programming language

Let Σ be a vocabulary that comes with a typing assignation σ such that for
each operation f ∈ Σ, σ(f) is the type of f . Thanks to the vocabulary Σ,
we may define first order structures like integers, words, lists and operations
like conditional, addition, multiplication. We define ΛR(Σ) that extends ΛR by
adding (i) a fixpoint fix and (ii) first order facilities (n-ary constants) with respect
to a vocabulary Σ.

ΛR(Σ) ∋ t
def

= x | t t | λx.t | 〈t〉 | let〈x〉 = t in t | fix t | f(t, . . . , t) where f ∈ Σ

The reduction rules of ΛR(Σ) are the ones of ΛR and rules as given below:

fix t
fix
→ t (fix t) f(t1, . . . , tn)

f
→ t′ where f ∈ Σ

5.2 Representing expressions

Quoted terms are data with a syntax at the same (meta)-level than ΛR expres-
sions. Presently, quoted terms don’t have any concrete representation and so it is
not possible to perform computation on them and for example to define staging
transformation, that is to specialize an expression to a data. Therefore, we now
give informally an expression-as-data representation of ΛR(Σ) expressions. For
this, assume given a data domain D generated by Σ and also assume a coding
t of an expression t, which is a bijective function from ΛR(Σ) to D. Then, t is
the concrete representation of a quoted term 〈t〉. An historical example of such
a coding is the Gödel numbering but we may also define an encoding function
on a more expressive structure using lists as it is explained in Jones book [7].

From now on, we may have an operation S in Σ that transforms quoted terms,
with the proviso that types of 〈p〉 and of S(〈p〉) are the same. We illustrate this
idea in Figure 2 by defining a term transformation S that reduces a quoted term
like a staging transformation. That is, redexes are reduced when it is possible.
As a result, a quoted term like 〈λf(λx.(fx))a〉 is reduced to 〈λf(fa)〉.

5.3 An example of staging transformation

An important benefit of having a program transformation defined over the en-
coding of quoted terms is that partial evaluation can be performed efficiently.
Take as an example the power function pown a such pown a = an. If we know
that the exponent, say 2, we would like to fully specialized the function pow and
obtain 〈λa.a × a〉. For this just take the following definition of pow:

pow = fixλp.λn.
if (n = 0)
then 〈λa.1〉
else let〈x〉 = p (n− 1) in S(〈λa.a × (x a)〉)

10 H. Godfroy and J. -Y.Marion

S(t)
S
→ t

′

S(λx.t)
S
→ λx.t

′

S(ti)
S
→ t

′

i f(t′1, · · · , t
′

n)
f
→ t S(t)

S
→ t

′

S(f(t1, · · · , tn))
S
→ t

′

S(ti)
S
→ t

′

i t
′

1 = λx.t
′′

1 t
′

1 t
′

2

λ
→ t

′′

1 [x← t
′

2] S(t′′1 [x← t
′

2])
S
→ t

′

S(t1 t2)
S
→ t

′

S(ti)
S
→ t

′

i t
′

1 = 〈t′′1 〉 let〈x〉 = t
′

1 in t
′

2

let
→ t

′

2[x← t
′′

1] S(t′2[x← t
′′

1])
S
→ t

′

S(let〈x〉 = t1 in t2)
S
→ t

′

Otherwise : S(t)
S
→ t

Fig. 2. The (meta)-rules of the program transformation S

where S is the program transformation defined previously. The function pow

has the type int→!(int→ int) in SIL. By a straightforward induction on n, we
can prove that pown is fully specialized. So for example, pow 3 is specialized to
〈λa.a × a × a〉.

6 A typed reflexive theory of control

Until now, we have focused on the process of reflecting a quoted term or on
reifying a term. The next step is to a give to a program the ability to reflect and
reify its own context. This is an important feature in the design of a program-
ming language by ”bootstrapping”. More generally, the design of self-modifying
programs necessitates to control contexts of execution. A typical example which
comes from the malware programming world is a payload (i.e. the code of the
virus) which is run piece by piece inside a sequence of waves of interpreters.
Each wave may just run another layer of interpretation and may call a part of
the code of the payload and returns a value to the context of the current wave
or to the context of a previous wave.

6.1 Syntax and semantics

We define Λ∗

R which extends ΛR by adding continuations as follows

Λ∗

R ∋ t
def

= x | t t | λx.t | 〈t〉 | let〈x〉 = t in t | kπ | E

Stacks (or evaluation contexts) are defined simultaneously thus

π = [] | t.π | (x, t).π

A theory of reflexive computation based on soft intuitionistic logic 11

A stack is a finite sequence t1 · · · tn.[] of closed expressions or of couples (x, t)
where FV(t) ⊂ {x}, that ends with the bottom of the stack []. Expressions kπ
are continuations. They are constants indexed by stacks.

Semantics of Λ∗

R is given by a Krivine’s machine [10] that performs a Call-
By-Name (CBN) computation:

t t′ ⋆ π → t ⋆ t′.π
λx.t ⋆ t′.π → t[x← t′] ⋆ π
let〈x〉 = t in t′ ⋆ π → t ⋆ (x, t′).π
〈t〉 ⋆ (x, t′).π → t′[x← t] ⋆ π
E ⋆ t.π → t ⋆ 〈kπ〉.[]
kπ′ ⋆ t.π → t ⋆ π′

The main difference with a standard Krivine’s abstract machine is the control
operator E . When E is run1, the current context is reified and thus 〈kπ〉 is
pushed on the current stack. Thus, a program may eventually read or modify its
evaluation context because it is a data. Conversely, in order to run a continuation
kπ′ , we need first to reflect the quoted stack 〈kπ′〉 thanks to the let rule. When
a let rule is triggered, the expression t is first evaluated and (x, t′) is pushed on
the stack. Then, when a quoted term is met 〈t〉, the variable x is replaced by t
in t′.

A state of Krivine abstract machine is a pair t⋆π where t is a closed expression
and π is a stack. The initial state is t ⋆ []. There are four kinds of halting states:
λx.t ⋆ [], 〈t〉 ⋆ [], E ⋆ [] and kπ ⋆ [], which correspond to the end of a normal
computation. All other final states are error states. For example, λx.t ⋆ (x, t).π
is an error state because (x, t) is not a term.

6.2 A type system for reflexive continuations

Following Krivine’s approach [9], we define a type system SIL∗ to type a subset
of Λ∗

R expressions. SIL∗ is an extension of SIL. Types are defined thus.

A
def

= A→ A|!A | ⊥

The constant type ⊥ is the ”empty type”, that is the type of terms which do
not return anything to their immediate context. For instance, kπ t evaluates t
in π and is of type ⊥ because it returns nothing locally.

1 The control operator is dubbed E to recall Kleene’s enumerator E which satisfies
E(#M) = M where #M is an encoding of M . See Barendregt’s book p.167

12 H. Godfroy and J. -Y.Marion

Type rules of SIL∗ are inspired by Selinger [19] and comprise the following
rules for constants and stacks in addition of the type rules of SIL

Call/CC

Γ ⊢ E : (!(A→ ⊥)→ ⊥)→ A

Throw
π : A ⊢

Γ ⊢ kπ : A→ ⊥

Bot

[] : ⊥ ⊢

Top

[] : Atop ⊢

TermCons
⊢ t : A π : B ⊢

t.π : A→ B ⊢

LetCons
〈x〉 :!A ⊢ t : B π : B ⊢

(x, t).π :!A ⊢

The type of E is a variation of the double negation rule in which the modality
! indicates that it is not the stack which is stored but a data that represents a
stack. Here the rule Top where Atop is the top-level type of the entire program
as in [19]. The type of a stack is the type of a term that can use the stack as an
evaluation context.

Finally, a state t ⋆ π is well typed if both the expression t and the stack π are
of same type:

Proc
⊢ t : A π : A ⊢

⊢ t ⋆ π

6.3 Soundness of the type system

Now we establish that the evaluation of closed and well-typed expression t in
SIL∗ by the Krivine abstract machine is correct.

Theorem 3 (Type soundness) If t is closed and is well typed in SIL∗, then

there is no sequence of the Krivine’s abstract machine from t ⋆ [] leading to an

error state.

To prove this theorem, we use a modified version of the subject reduction
property which claims that well typing property is preserved all along the com-
putation (Lemma 3). Moreover if t is closed and well typed, then t ⋆ [] is well
typed. And finally no error state is well typed (Lemma 2).

Lemma 2. No error state is well typed.

Proof. Error states are of the forms λx.t ⋆ (x′, t′).π, 〈t〉 ⋆ t′.π, E ⋆ (x, t).π and
kπ ⋆ (x, t′).π′. Each error cannot be typed because types A → B and !C are
different.

SIL∗ enjoys subject reduction.

Lemma 3 (Subject reduction). If t ⋆ π is well typed and t ⋆ π → t′ ⋆ π′ then

t′ ⋆ π′ is well typed.

A theory of reflexive computation based on soft intuitionistic logic 13

Proof. Substitution Lemma 1 is still valid. Then the theorem is proved by case
analysis on the evaluation rule:

– Suppose that let〈x〉 = t in t′ ⋆ π is well typed. Then 〈x〉 :!A ⊢ t′ : B and
⊢ t :!A and π : B ⊢. It follows by rule LetCons that (x, t′).π :!A ⊢. So
t ⋆ (x, t′).π is well typed.

– Suppose that 〈t〉 ⋆ (x, t′).π is well typed. Then ⊢ t : A, 〈x〉 :!A ⊢ t′ : B and
π : B ⊢. By substitution lemma, ⊢ t′[x/t] : B. Then t′[x/t] ⋆ π is well typed.

– Suppose that E ⋆ t.π is well typed. Then t.π : (!(A → ⊥) → ⊥) → A) ⊢. It
follows that ⊢ t :!(A → ⊥) → ⊥ and π : A ⊢. Since ⊢ 〈kπ〉 :!(A → ⊥), we
have 〈kπ〉.[] :!(A→ ⊥)→ ⊥ ⊢. So t ⋆ 〈kπ〉.[] is well typed.

The other cases are similar.

6.4 Going up and down

The system SIL∗ provides mechanisms to have full access to the state of the
computation, that is the expression under evaluation and its context. This access
is provided by reification. Similarly, reflection can specify in which evaluation
context an expression is evaluated. As previously said, it is common to specify a
self-modifying program as a reflective tower in which the term at wave n spawns
a term at wave n+ 1 by executing a quoted term. Then, the expression run at
wave n+1 may have access to the evaluation context of wave n, and actually it
may have access to each evaluation context below it, that is from the wave 1 to
the wave n+ 1.

We illustrate this scenario by an example. For this, we reread and adapt
Mendhekar and Friedman [14] approach. We first define a reflective operator
⊗ :!(A → ⊥) →!A → ⊥ which takes a reified evaluation context and a reified
expression and create a new wave by spawning the input expression in the given
evaluation context:

⊗
def

= λK.λT. let〈k〉 = K in let〈t〉 = T in k t.

Thus, if 〈Tn+1〉 encodes a given expression Tn+1 and 〈kπn+1
〉 encodes a given

evaluation context πn+1, ⊗〈kπn+1
〉〈Tn+1〉 generates the wave n+1 by spawning

the state (Tn+1 ⋆ πn+1) as follows:

⊗〈kπn+1
〉〈Tn+1〉 ⋆ π

∗

→ kπn+1
Tn+1 ⋆ π

∗

→ Tn+1 ⋆ πn+1

The reflective operator ⊗ allows to go from wave n to wave n+1. Intuitively, we
may define the wave 1 as the sequence of states starting from the initial state
(t⋆[]) to the first state (⊗〈kπ1

〉〈T1〉)⋆π containing ⊗. At this moment, the second
wave begins until it reaches again a state like (⊗〈kπ2

〉〈T2〉) ⋆ π′, and so on. The
intuition is that the reflective operator ⊗ is not executed inside a wave and so
no data are run.

The second step of the construction consists in providing access to the eval-
uation context of the wave n to Tn+1 at wave n + 1. For this, we suppose that

14 H. Godfroy and J. -Y.Marion

Tn+1 has a free variable k which will be replace by a continuation pointing to
the evaluation context of the previous wave. The wave n expression Tn spawns
wave n+ 1:

Tn
def

= E(λK. let〈k〉 = K in ⊗ 〈kπn+1
〉 〈Tn+1〉).

Suppose that the stack πn is of type An. Then, Tn is of type An. The run of
Tn in its evaluation context πn proceeds as follows:

1. Tn captures a reified version of its context:

E(λK. let〈k〉 = K in ⊗ 〈kπn+1
〉 〈Tn+1〉) ⋆ πn

→ λK. let〈k〉 = K in ⊗ 〈kπn+1
〉 〈Tn+1〉 ⋆ 〈kπn

〉.[]

→ let〈k〉 = 〈kπn
〉 in ⊗ 〈kπn+1

〉 〈Tn+1〉 ⋆ []

2. Tn sends its reified context to data 〈Tn+1〉 by binding k.

⊗〈kπn+1
〉 〈Tn+1[k ← kπn

]〉 ⋆ []
∗

→ Tn+1[k ← kπn
] ⋆ πn+1

References

1. Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: a language for polyno-
mial time computation. In In Proc. FoSSaCS, Springer LNCS 2987, pages 27–41.
Springer, 2004.

2. Rowan Davies. A temporal-logic approach to binding-time analysis. Logic in

Computer Science, pages 184–195, Jul 1996.
3. Rowan Davies and Frank Pfenning. A Modal Analysis of Staged Computation.

Principles of programming languages, 1996.
4. Marco Gaboardi, Simona Ronchi, and Della Rocca. A soft type assignment system

for λ-calculus, 2007.
5. Timothy G. Griffin. A Formulae-as-type Notion of Control. In Proceedings of the

17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’90, pages 47–58, New York, NY, USA, 1990. ACM.
6. J. Roger Hindley. The Church-Rosser Property and a Result in Combinatory Logic.

PhD thesis, University of Newcastle, 1964.
7. Neil D. Jones. Computability and Complexity. MIT Press, 1997.
8. S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic,

3(4):150–155, 1938.
9. Jean-Louis Krivine. Dependent choice, quote and the clock. Theoretical Computer

Science, 2003.
10. Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher Order Sym-

bol. Comput., 20(3):199–207, September 2007.
11. Yves Lafont. Soft Linear Logic and Polynomial Time. Theoretical Computer Sci-

ence, 318:2004, 2002.
12. Jean-Yves Marion. From Turing machines to computer viruses. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences, 370(1971):3319–3339, 2012.
13. Simone Martini and Andrea Masini. A Modal View of Linear Logic. The Journal

of Symbolic Logic, 59(3):pp. 888–899, 1994.

A theory of reflexive computation based on soft intuitionistic logic 15

14. Anurag Mendhekar and Dan Friedman. Towards a theory of reflexive programming
languages. Worskshop on Reflection and Meta-level Architectures, 1993.

15. Yiannis N. Moschovakis. Kleene’s amazing second recursion theorem. Bulletin of

Symbolic Logic, 16(2):189–239, 2010.
16. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual Modal

Type Theory. Transactions on Computational Logic, February 2007.
17. Barry K. Rosen. Tree-Manipulating Systems and Church-Rosser Theorems. J.

ACM, 20(1):160–187, January 1973.
18. Harold Schellinx. A Linear Approach to Modal Proof Theory, pages 33–43. Springer

Netherlands, Dordrecht, 1996.
19. Peter Selinger. From Continuation Passing Style to Krivine Abstract Machine.

May 2003.
20. Walid Taha. A Gentle Introduction to Multi-stage Programming. Domain-Specific

Program Generation, 2004.
21. Philip Wadler. A syntax for linear logic. International Conference on the Mathe-

matical Foundations of Programming Semantics, April 1993.

