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We propose a scheme to measure the parity of two distant qubits, while ensuring that losses on the
quantum channel between them does not destroy coherences within the parity subspaces. This capability enables
deterministic preparation of highly entangled qubit states whose fidelity is not limited by the transmission loss.
The key observation is that, for a probe electromagnetic field in a particular quantum state; namely, a superposition
of two coherent states of opposite phases, the transmission loss stochastically applies a near-unitary backaction
on the probe state. This leads to a parity measurement protocol where the main effect of the transmission losses
is a decrease in the measurement strength. By repeating the nondestructive (weak) parity measurement, one
achieves a high-fidelity entanglement in spite of a significant transmission loss.
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I. INTRODUCTION

The correlation of distant systems through entanglement is
a hallmark of quantum physics [1,2] and plays a fundamental
role in envisioned quantum technology. Most fundamentally,
quantum teleportation [3] shows how entanglement is a
resource for effectively transmitting the unknown state of
a quantum system, without physically transmitting quantum
states. Towards future quantum computers, such teleportation
could transport information between few-qubit processing
units and memory units which must be well isolated and
hence not directly coupled to the rest of the system via tunable
physical interactions. This so-called modular architecture for
quantum computing provides a viable solution to the ma-
jor scaling problem for many-qubit quantum information
processing [4,5]. In quantum communication, similar ideas
would allow quantum repeaters to purify information through
local operations only, provided they can consume units of
entanglement between the communicating devices [6,7]; such
quantum repeaters are a necessary technology for accurate
quantum communication, with associated, e.g., cryptographic
benefits, over long distances.

A major challenge towards enabling these applications
is that generating entangled states between distant systems
must rely itself on a quantum channel (see impossibility with
local operations and classical communication). Microwave
experiments have demonstrated how to deterministically en-
tangle separate quantum subsystems via parity measurements
[8], yet with a fidelity directly limited by the quality of the
quantum channel: any losses on the probe field imply losses
in entanglement. Channel losses can also be made to affect
preparation success probability, instead of preparation fidelity.
Many theoretical proposals [9–13] and experiments [14–19]
have considered high-fidelity entanglement generation, despite
propagation losses, by heralding the preparation on some rare
photodetection events. The success rate of this probabilistic
preparation is, however, very low in current experiments, while
the preparation fidelity is still limited by imperfections such
as dark counts of the photodetector. Recent developments in
quantum superconducting circuit setups, like Refs. [20–25],
show that local operations are becoming extremely reliable
and fast, e.g., manipulating “cat states” as efficiently as

single photons and having continuous field measurements
instead of photon counters. The remaining bottleneck towards
entanglement stabilization is then the channel loss.

This paper provides an explicit proposal for solving this
problem through the achievement of loss-tolerant degeneracy-
preserving quantum nondemolition (QND) parity measure-
ments between spatially separated qubits. Our key idea is to
transmit over the quantum channel particularly engineered
quantum states of light, i.e., “cat states”, for which the
dominant photon loss errors almost reduce to photon-number
parity flips [26]. With this we design the interaction between
qubits and probe field such that (i) measuring the probe at
the output performs a QND measurement of qubit parity
and (ii) photon loss events on the transmitted probe field
render the detection less decisive (weak measurement) but,
to a very good approximation, do not break the degeneracy of
the parity subspaces. This measurement enables an efficient
entanglement stabilization scheme, which not only generates
highly entangled states but also protects them over arbitrarily
long times against various noise channels.

The rather standard abstract setting [Fig. 1(a)] comprises
two target qubits |qA〉, |qB〉 at different locations A, B and
possibly embedded in auxiliary quantum machinery, e.g.,
a cavity in circuit quantum electrodynamics (QED) setups
[27]. For each measurement, a source generates a controlled
“probe” quantum state |ψp〉 at A which then interacts with |qA〉
according to a unitary UA, is transmitted over a noisy quantum
channel C, interacts with |qB〉 according to UB , and finally hits
a detector at B. Those probe states play the role of parity meter.
Since the quantum channel is the unequivocal bottleneck for
remote entanglement in state-of-the-art technology [28], we
focus on this issue and assume in this paper that the local
actions (i.e., UA, UB , generating |ψp〉, detection at B) are
implemented perfectly. As we will show later, imperfections
on such operations will have a small effect on the steady state
when we stabilize quantum entanglement via feedback.

II. DEGENERACY-PRESERVING
PARITY MEASUREMENT

The QND measurement of a quantum observable Q

discriminates possibly imperfectly between the eigenspaces of
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FIG. 1. (a) General setup for remote parity measurement with a
probe |ψp〉 propagating on a noisy quantum channel C between two
target qubits |qA〉 and |qB〉. (b) Quantum logic circuit summarizing our
concept with CNOT gates involving target qubits |qA〉, |qB〉 and a probe
qubit |qp〉. We represent the unknown corrupting operations on the
quantum channel as applying known Ek , k = 1,2, . . . conditionally
on unknown states of the environment (env). (c) Corresponding
experimental setup with a probe field initialized in a coherent
superposition of two opposite coherent states (“cat state”). (d)
Alternative concurrent scheme with entangled probe fields between
two 50/50 beam splitters; loss channels are depicted in lighter font
for better readability.

Q but ensures that every eigenspace of Q remains unaffected
for all possible detection results. When Q is degenerate,
this only ensures that a state inside an eigenspace is sent
to a state in the same eigenspace. A degeneracy-preserving
quantum nondemolition (DP-QND) measurement is a QND
measurement that does not affect any eigenstate of Q. In
other words, the DP-QND measurement acts as the identity
on each eigenspace [13]. Consider the parity observable
Q = Q+ − Q− for two qubits in the canonical basis {|0〉,|1〉},

with

Q+ = |00〉〈00| + |11〉〈11|, Q− = |01〉〈01| + |10〉〈10|.
In a projective measurement of Q, detection result + (−)
would project the two qubits onto the even parity manifold
span{|00〉,|11〉} (the odd parity manifold span{|01〉,|10〉}).
Less decisive DP-QND measurements can result, for instance,
from classical detection uncertainty, e.g., with probability
1 − ξ an even (odd) parity state gives detection result − (+).
Then the probability to detect ± becomes p± = ξ 〈ψ |Q±|ψ〉 +
(1 − ξ )〈ψ |Q∓|ψ〉 with corresponding measurement backac-
tion transforming the initial state |ψ〉 into [29]

K̃±(|ψ〉〈ψ |) = ξQ±|ψ〉〈ψ |Q± + (1 − ξ )Q∓|ψ〉〈ψ |Q∓
p±

.

Any even-parity (odd-parity) state remains unchanged under
such measurement backaction and predominantly gives detec-
tion result + (−), i.e., with probability ξ ∈ (1/2,1].

We first sketch the general concept of our proposal for
DP-QND measurement of parity, with |ψp〉 = |qp〉 an abstract
probe qubit, similarly to the distillation discussion in e.g.,
Ref. [13]. Starting with |qp〉 = |0〉p we let UA (UB) implement
a CNOT gate on |qp〉 conditioned by |qA〉 (|qB〉); see Fig. 1(b).
If the channel C was perfect [Ek = Identity for k = 1,2, . . .

in Fig. 1(b)], then an initial state (|11〉 ± |00〉)A,B |0〉p/
√

2
would remain unchanged, while an initial state (|10〉 ±
|01〉)A,B |0〉p/

√
2 would become (|10〉 ± |01〉)A,B |1〉p/

√
2 just

before detection of the probe. Thus the measurement opera-
tions correspond to K̃+, K̃− with ξ = 1.

Now let the channel subject the probe to an unknown
number n ∈ {0,1,2, . . .} of bit flips Ek = |1〉〈0|p + |0〉〈1|p;
this can be represented as conditioning each bit flip on an
unknown hypothetical state of the environment. For n even,
the outcome is as for the perfect channel. For n odd the final
probe state is reversed, e.g., input (|11〉 ± |00〉)A,B |0〉p/

√
2

yields output (|11〉 ± |00〉)A,B |1〉p/
√

2, but most importantly,
the target qubits’ state remains unaffected. This essential
property ensures that the expected evolution for n unknown
(equivalently, tracing over the unknown states of the envi-
ronment) remains a DP-QND parity measurement, explicitly
described by operators K̃+, K̃− with ξ = ∑

n even Prob(n) < 1.
One can easily adapt this ξ to include detection misses
and errors. A broad distribution of values of n implies low
measurement contrast, pushing ξ close to 1/2, but it does not
impede its DP-QND character. Hence when sufficiently many
measurements can be repeated within a relevant timescale, a
conclusive result is obtained even for ξ close to 1/2 (see details
below).

This DP-QND property is, in fact unavoidably, lost under
general channel errors (see Appendix A). If, for instance,
C includes a phase flip E1 = |0〉〈0| − |1〉〈1|p, then the
initial even-parity Bell state |ψ+〉 = (|11〉+|00〉)A,B/

√
2 gets

transformed by measurement backaction into |ψ−〉 = (|11〉 −
|00〉)A,B/

√
2; thus this eigenstate of Q is not conserved,

breaking the DP-QND character. Not knowing if E1 was
applied or not, the initial maximally entangled state |ψ+〉 gets
transformed into a statistical mixture of |ψ+〉 and |ψ−〉, i.e.,
entanglement is lost.
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III. TOWARDS A PHYSICAL IMPLEMENTATION

These abstract properties indicate a pathway towards loss-
tolerant parity measurement: use a subspace of probe states
on which the dominant decoherence channel acts as a unitary
root of identity, e.g., a bit flip. Our key observation is that
this fits a physical implementation where the probe is an elec-
tromagnetic field pulse whose logical states are materialized
by so-called “cat states”, i.e., mesoscopic superpositions of
coherent states. This encoding, proposed earlier for quantum
computing [26,30], ensures that photon losses imply to a good
approximation coherent logical bit flips. The rest of this paper
describes such implementation in detail.

A. Probe’s cat states

This physical implementation of loss-tolerant parity mea-
surement is sketched in Fig. 1(c). We denote by

|C±
β 〉 = (|β〉 ± |−β〉)/N±

β , N±
β =

√
2 ± 2e−2|β|2 ,

the superpositions between two coherent states |β〉 and
|−β〉, β ∈ R; the normalization constants N±

β rapidly ap-

proach
√

2 as the coherent amplitude β increases. The probe
field is initially prepared in |C+

α 〉p and interacts with two qubit-
cavity systems in a cascaded manner. Between the two setups it
is exposed to losses, modeled as mixing with the vacuum state
|0〉env of an ancillary mode through a beam-splitter unitary
operator U

η

BS with transmittance
√

η and reflectance
√

1 − η.
The unitary operators apply:

UA|0〉A|C±
α 〉p = |0〉A|C±

α 〉p,

UA|1〉A|C±
α 〉p = |1〉A|C∓

α 〉p,

UB |0〉B |C±√
ηα

〉p = |0〉B |C±√
ηα

〉p,

UB |1〉B |C±√
ηα

〉p = |1〉B |C∓√
ηα

〉p,

U
η

BS|C±
α 〉p|0〉env = 1

N±
α

(|√ηα〉p|
√

1 − ηα〉env

± |−√
ηα〉p|−

√
1 − ηα〉env). (1)

Finally, after interaction with the second qubit, a measurement
(e.g., of photon-number parity observable) projects the probe’s
state onto |C+√

ηα
〉p or |C−√

ηα
〉p. Calling |C+

β 〉p and |C−
β 〉p

respectively the logical |0〉p and |1〉p, we recover the scheme
where UA, UB implement CNOT gates.

Before analyzing in detail the cascade scheme of Fig. 1(c),
we want to introduce a corresponding concurrent scheme,
depicted in Fig. 1(d). The initial 50/50 beam splitter generates
a probe state of two entangled fields, (|C+

α 〉pA|C−
α 〉pB +

|C−
α 〉pA|C+

α 〉pB)/
√

2, with α = γ /
√

2. These two output fields
are sent along lossy quantum channels towards the respective
qubits where they undergo the equivalent of a CNOT. After
the final beam-splitter, a similar measurement to the cascaded
scheme is applied to the channel A′. While the rest of the
paper will deal with the analysis of the cascaded scheme, all
the derivations can be adapted to this concurrent architecture
in a straightforward manner.

B. Performance analysis

We now analyze in detail the performance of the scheme
of Fig. 1(c). As we trace on the ancillary field modeling the
losses, we can without loss of generality imagine a virtual
detector also projecting it to |C+√

1−ηα
〉env or |C−√

1−ηα
〉env, but

with unread detection result. The measurement outcomes of
the two detectors (one real and one virtual) are associated
with four Kraus operators Mσ,σ and Mσ,−σ with σ ∈ {+,−},
modeling the backaction of the measurements on the target
qubits: e.g., their state ρ, after measuring even parities for
both detectors, is modified to M+,+ρM

†
+,+/Tr(M+,+ρM

†
+,+).

Following the computations of Appendix B, these Kraus
operators are

Mσ,σ =
N σ√

1−ηα

2

⎛
⎝N σ√

ηα

N+
α

|00〉〈00| +
N (−σ )√

ηα

N−
α

|11〉〈11|
⎞
⎠,

Mσ,−σ =
N (−σ )√

1−ηα

2

⎛
⎝N σ√

ηα

N−
α

|10〉〈10| +
N (−σ )√

ηα

N+
α

|01〉〈01|
⎞
⎠. (2)

Discarding the inaccessible outcome of the virtual detector, the
backaction induced by the probe field measurement follows:

K+(ρ) = M+,+ρM
†
+,+ + M+,−ρM

†
+,−

Tr(M+,+ρM
†
+,+ + M+,−ρM

†
+,−)

,

K−(ρ) = M−,+ρM
†
−,+ + M−,−ρM

†
−,−

Tr(M−,+ρM
†
−,+ + M−,−ρM

†
−,−)

. (3)

In the lossless case (η = 1), M+,− and M−,− vanish as
N−

0 = 0; the coefficients in front of |00〉〈00| and |11〉〈11|
in M+,+ and in front of |01〉〈01| and |10〉〈10| in M−,+ are
identical, equal to 1. This is a projective parity measurement,
as described by K̃+, K̃− with ξ = 1.

The effect of transmission losses (η < 1) is twofold. First,
it reduces the measurement strength. Indeed, when the probe
field is detected in a given parity (e.g., +), the qubits
could be projected to the opposite parity (e.g., by the Kraus
operator M+,−). However, each measurement does increase
the conditional probability of finding the qubits in the same
parity as the one indicated by the detections, because

N+√
1−ηα

min

(
N+√

ηα

N+
α

,
N−√

ηα

N−
α

)

> N−√
1−ηα

max

(
N+√

ηα

N−
α

,
N−√

ηα

N+
α

)
.

A projective parity measurement under perfect transmission
(η = 1) is thus replaced by a less decisive measurement for
η < 1, where at each shot we gain partial information on the
parity. By repeating the measurement the state gets projected
onto a well-defined parity subspace. Most importantly, we
preserve the QND property: an initial state of definite parity
always keeps this parity [e.g., M+,−(|00〉 + |11〉) = 0].

However, the second, more harmful effect of transmission
loss is a slight perturbation of the DP-QND property, by
introducing slow mixing within each parity subspace. This
is due to the coherent states |β〉 and |−β〉 not being perfectly
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FIG. 2. Average evolution, over 1000 Monte Carlo simulations,
of the initial state (|0〉 + |1〉)A(|0〉 + |1〉)B/2 under repeated approx-
imate DP-QND parity measurements (2), (3), for various probe
field intensities |α|2 and transmission efficiency η = 0.75. The state
initially converges towards a definite parity state |Be

+〉 = (|00〉 +
|11〉)/√2 or |Bo

+〉 = (|01〉 + |10〉)/√2 thanks to the measurement,
then slowly loses fidelity to those states by dephasing, due to the
slight perturbation of the DP-QND property inside definite parity
subspaces. Here and everywhere throughout the paper, the fidelity to
a Bell state |Be

+〉 is defined as 〈Be
+|ρ|Be

+〉.

orthogonal, so that N+
β �= N−

β . This effectively induces de-
phasing inside parity subspaces, e.g.,N+√

ηα
/N+

α > N−√
ηα

/N−
α

implies that M+,+ drives |Be
±〉 = (|00〉 ± |11〉)/√2 closer to

|00〉 = (|Be
+〉 + |Be

−〉)/√2, while M−,− would drive them
closer to |11〉 = (|Be

+〉 − |Be
−〉)/√2.

The simulations in Fig. 2 illustrate the competition between
parity measurement and undesired dephasing for various |α|2
(average number of photons in the probe field). Initializing
both qubits in the state |+X〉 = (|0〉 + |1〉)/√2, a DP-QND
parity measurement should project the joint state towards one
of the two Bell states |Be

+〉 = (|00〉 + |11〉)/√2 or |Bo
+〉 =

(|01〉 + |10〉)/√2. This is the dominant tendency in Fig. 2,
but transmission loss induces slow dephasing, mixing the
target Bell states with the undesired ones |Be

−〉 = (|00〉 −
|11〉)/√2 and |Bo

−〉 = (|01〉 − |10〉)/√2. By increasing |α|2,
the difference between N+√

ηα
/N+

α and N−√
ηα

/N−
α decreases

and this undesired dephasing gets suppressed significantly,
at the expense of slower convergence, i.e., weaker parity
measurement. As soon as η > 1/2, one can achieve arbitrarily
high fidelity in this way.

In the next section, we give approximate analytical for-
mulas for these two competing rates, providing the maximal
achievable fidelity as a function of η, |α|2 and qubit lifetimes.

C. Measurement and dephasing rates

The rate at which the parity measurement acquires infor-
mation can be expressed analytically as a function of η and
|α|2. Define the Lyapunov function

V parity(ρ) =
√

〈00|ρ|00〉〈10|ρ|10〉
+

√
〈11|ρ|11〉〈01|ρ|01〉

= wB0

2

√
1 − (PB0)2 + wB1

2

√
1 − (PB1)2, (4)

where wBqB
= 〈qB |ρ|qB〉B denotes the population with qubit

B in state |qB〉 and PBqB
= Tr(σz ⊗ σzρ|qB〉〈qB |)/wBqB

mea-
sures the parity, conditioned on qubit B being in state |qB〉, for
qB ∈ {0,1}. One computes that

〈V parity(ρk+1)〉 =
√

1 − e−4(1−η)|α|2√
1 − e−4|α|2

〈V parity(ρk)〉, (5)

where ρk is the joint qubits state after the kth measurement
and 〈V parity〉 denotes the ensemble average of V parity over
measurement realizations. Indeed, we have

E(V parity(ρk+1)|ρk) = V parity(K+(ρk))P(+|ρk)

+V parity(K−(ρk))P(−|ρk),

where

P(+|ρk) = Tr(M+,+ρkM
†
+,+ + M+,−ρkM

†
+,−),

P(−|ρk) = Tr(M−,+ρkM
†
−,+ + M−,−ρkM

†
−,−)

are respectively the conditional probabilities of achieving a
positive or negative outcome at kth measurement. From this,
we get

E(V parity(ρk+1)|ρk)

=
√

〈00|M+,+ρkM
†
+,+|00〉〈10|M+,−ρkM

†
+,−|10〉

+
√

〈11|M+,+ρkM
†
+,+|11〉〈01|M+,−ρkM

†
+,−|01〉

+
√

〈00|M−,−ρkM
†
−,−|00〉〈10|M−,+ρkM

†
−,+|10〉

+
√

〈11|M−,−ρkM
†
−,−|11〉〈01|M−,+ρkM

†
−,+|01〉

=
(

N+√
1−ηα

N−√
1−ηα

N+
α N−

α

)
V parity(ρk).

Taking the expectation value of both sides with respect to ρk ,
we find the result of Eq. (5). Thus, V parity exponentially decays
to zero at a rate (per measurement iteration)

rparity = 1

2
ln

(
1 − e−4|α|2

1 − e−4(1−η)|α|2

)
.

In the case of a fully DP-QND measurement, i.e., assuming
N+√

ηα
/N+

α 
 N−√
ηα

/N−
α and N+√

ηα
/N−

α 
 N−√
ηα

/N+
α in the

Kraus operators, the two terms in the Lyapunov function (4)
would decay at the same rate and rparity represents precisely
the parity measurement strength. Indeed, in this case we would
obtain the same result with the alternative Lyapunov function
V

parity
ideal (ρ) = 1

2 [1 − P (ρ)2]1/2, where P (ρ) = Tr(σz ⊗ σzρ).
One can also analytically calculate the dephasing rate

induced by the transmission loss. To this aim we define the
coherence function

C(ρ) = |〈00|ρ|11〉| + |〈01|ρ|10〉|.
Similar calculations as above lead to

〈C(ρk+1)〉 =
√

1 − e−4η|α|2√
1 − e−4|α|2

〈C(ρk)〉.
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FIG. 3. The performance of the near DP-QND parity measure-
ment is explained by two rates. The measurement strength rparity

indicates how fast the state is projected onto a parity eigenspace. The
dephasing rate rdephasing indicates how fast the coherence inside a parity
eigenspace vanishes. Here, we have fixed η = 0.75 and |α|2 = 2. The
blue (solid) curve illustrates the maximum fidelity to one of the two
Bell states |Be

+〉 and |Bo
+〉, in simulations of our measurement scheme,

when the two qubits are initialized in the state (|0〉 + |1〉)A(|0〉 +
|1〉)B/2 and we take an average over 1000 Monte Carlo trajectories.
The black (dashed) curve illustrates the average parity converging at
the characteristic rate of the Lyapunov function Vparity(ρ). The red
(dashed) curve, decreasing with the same characteristic rate as the
coherence function C(ρ), illustrates the dephasing inside a parity
eigenspace. The green (dashed) curve represents the product of both
these effects. This theoretical curve fits reasonably well with the
simulations (blue solid curve).

Therefore the coherence function C(ρ) exponentially decays
to zero at a rate (per measurement iteration)

rdephasing = 1

2
ln

(
1 − e−4|α|2

1 − e−4η|α|2

)
.

Figure 3 provides a comparison of the simulations to the
above analytical results. As can be seen, the performance of
the parity measurement protocol can be well explained by
using the above two rates. The slight mismatch between the
raising rate of the blue curve (fidelity to Bell states) and the
theoretical rparity can be explained by the nonlinear relation
between the fidelity and the Lyapunov function Vparity. This
nonlinearity makes it impossible to translate the rate rparity

into a precise exponential rate for the raising dynamics of the
average fidelity.

The expressions for rparity and rdephasing allow us to analyze
the measurement performance as a function of η and |α|2.
Consider again the evolution depicted in Figs. 2 and 3.
The fidelity to the closest Bell state is 1/2 times the sum
of two terms: dominant parity population, which converges
from 1/2 to 1 at roughly a rate rparity, and dominant phase
population, which decreases from 1 to 1/2 at a rate rdephasing.
The two terms contribute equally to the error after a number of
measurements τ = τmeas satisfying e−rparityτ + e−rdephasingτ = 1.
The corresponding estimate of Bell-state fidelity is Fmeas =
1 − e−rparityτmeas/2. This is a good estimate of the maximum
reached by the curves on Figs. 2 and 3. Figure 4 illustrates
these indicators of our parity measurement’s performance. For
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FIG. 4. Estimate Fmeas of the highest fidelity to the closest
Bell state (thick black, left axis), obtained by repeated application
of our near DP-QND parity measurement (2), (3) starting from
(|0〉 + |1〉)A(|0〉 + |1〉)B/2, before dephasing destroys coherence in
absence of feedback. Estimate τmeas of the number of measurements
after which this highest fidelity is reached (thin red, right axis), giving
an indication of measurement strength.

transmission efficiency as low as 70% we can get Fmeas as
high as 99% in 400 measurement steps, taking |α|2 = 3.273.
Increasing η to 85% one achieves the same Fmeas with only 17
measurements, taking |α|2 = 1.63.

In the limit rparity�rdephasing (equivalent to e4(2η−1)|α|2�1),
one can approximately replace e−rdephasingτ by 1 − rdephasingτ , and
therefore the solution to the transcendental equation e−rparityτ +
e−rdephasingτ = 1, giving the point of maximal fidelity, is well
estimated by

τmeas = 1

rparity
W0

(
rparity

rdephasing

)
,

where W0 is the Lambert W function.

IV. FEEDBACK STABILIZATION OF BELL STATES

Our near DP-QND parity measurement can be used to
stabilize a particular Bell state with a simple feedback protocol.
To stabilize |Be

+〉, (i) apply a π pulse around the X axis
on the first qubit whenever the measurements estimate a
probability higher than 1/2 to be in the odd-parity subspace,
(ii) after that, apply a π/2 pulse on both qubits around the Y

axis irrespectively of the detection result. The measurement
backaction favors convergence towards the dominant parity,
the π pulse correcting the parity whenever this is not even.
This pushes the state towards the span of |Be

+〉, |Be
−〉 without

favoring the target |Be
+〉. The two π/2 pulses then leave |Be

+〉
untouched and send the undesired |Be

−〉 onto |Bo
+〉, such that

the next parity measurement stochastically moves the corre-
sponding population as well towards the target. Simulations
in Fig. 5 illustrate the performance of this protocol, having
fixed η = 0.75 and varying |α|2. As expected, a larger |α|2
allows us to reach higher final fidelity but also implies slower
convergence.

The information needed to implement general feedback
decisions is typically obtained by a quantum filter, i.e., a
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FIG. 5. Feedback stabilization of Bell state |Be
+〉.

computer estimating the state by simulating the evolution (3)
associated with the respective detection results. Such filters
are known to be stable [31]. In the present case, because the
feedback decision requires only to know the respective parity
populations, the quantum filter can be simplified significantly;
namely, by discarding all off-diagonal components in the
Bell-state basis. Indeed, first note that the measurement does
not depend on coherences among subspaces of different parity.
Moreover, the measurement itself completely destroys, in a
single iteration, any coherences between subspaces of different
parity. The π/2 pulses “export” coherences possibly present
between, e.g., |Be

+〉 and |Be
−〉 into coherences between |Be

+〉
and |Bo

+〉, i.e., between different parity subspaces, which are
thus destroyed at the next measurement; while they “import”
into, e.g., the even-parity eigenspace, the coherences previ-
ously present between |Be

+〉 and |Bo
+〉, which are none since

those two Bell states belong to different-parity eigenspaces and
their coherences were thus destroyed by the last measurement.
Thus, after one initial weak measurement step at most, no
relevant coherences among Bell states will survive. This allows
us to update just the populations on the four Bell states, as
in a classical filter for a partially observed Markov chain.
This filter, updating the populations on the four Bell states,
is the only computation required for the feedback: the action
itself just requires a binary decision, to switch towards the
predominantly populated parity.

To analyze the feedback more explicitly, we note that
instead of applying the π/2 pulses to rotate the state in
the Schrödinger picture, we can reformulate the dynamics
by applying the π/2 pulses to the measurement scheme, in
an equivalent Heisenberg picture. The corresponding mea-
surements then alternate between the parity measurement
σz ⊗ σz in the z basis, and a parity measurement σx ⊗ σx

in the x basis. The corresponding state is subject to π

pulses in the respective z or x basis. A π pulse in the z

basis (x basis) does not change the populations of x-parity
subspaces (of z-parity subspaces) and is applied to increase
the population in span{|Be

+〉,|Be
−〉} (span{|Be

+〉,|Bo
+〉}). The

stochastic convergence of the measured system towards a
definite parity in both x and z coordinates ensures that, in the
absence of other effects, the population in span{|Be

+〉,|Be
−〉} ∩

span{|Be
+〉,|Bo

+〉} = |Be
+〉 would increase in expectation until

reaching 100%. The dephasing effect limits the actual fidelity
for a given α. Taking α larger allows us to increase the fidelity,
but slows down the convergence, such that a trade-off value of

α must be selected with respect to other decoherence effects
acting on the system.

We can quantify the performance of this feedback scheme
by using the characteristic convergence rates computed in the
previous section. Noting that the π/2 pulses ensure a rapid
oscillation between the states |Be

−〉 and |Bo
+〉, we define ξ (t) to

be their combined population at time t . For rparity, rdephasing 
 1
i.e., a small rate of change per measurement iteration, we can
approximate the system dynamics by a continuous-time model
for the populations pk of Bell state |k〉 (and ξ = pBe− + pBo+):

d

dt
pBe+ = − rdephasing

2Td

pBe+ +
(

rparity

2Td

+ rdephasing

4Td

)
ξ,

d

dt
pBo− = −

(
rparity

Td

+ rdephasing

2Td

)
pBo− + rdephasing

4Td

ξ,

d

dt
ξ = −

(
rparity

2Td

+ rdephasing

2Td

)
ξ + rdephasing

2Td

pBe+

+
(

rparity

Td

+ rdephasing

2Td

)
pBo− . (6)

Here t denotes actual time and Td is the time between
two consecutive detection results. To obtain these equations,
we have used the fact that the measurement destroys any
coherences among Bell states, so only populations are relevant.
The nonlinear relation between V parity and the fidelities makes
it impossible to be more accurate than order of magnitude
about rparity, and we have observed in simulations that the
true dynamics is more complicated than the linear model (6).
However, the model (6) gives valuable indications about the
dependence of the whole scheme on α (through rparity and
rdephasing) and allows us to efficiently optimize α for given
settings. The steady state of Eq. (6) is obtained with

pBe+ = δ2

(1 + δ)2 , where δ = 2rparity

rdephasing
+ 1,

which increases with α as expected.
To practically illustrate the trade-off with slower conver-

gence at larger α, we can add to the picture the qubit relaxation
and qubit dephasing:

d

dt
ρ =

∑
k∈{A,B}

LkρL
†
k − 1

2
(L†

kLkρ + ρL
†
kLk)

+
∑

k∈{A,B}
L̃kρL̃

†
k − 1

2
(L̃†

kL̃kρ + ρL̃
†
kL̃k),

with Lk =
√

1

T k
1

|0〉〈1|k, L̃k =
√

1

2T k
φ

σ k
z . (7)

Here |0〉〈1|k is the qubit k’s lowering operator, σ k
z is just σz on

qubit k, T k
1 is the relaxation time, and T k

φ is the pure dephasing
time. Note that we apply these decoherences in the laboratory
coordinates, where the qubits undergo π/2 rotations after each
measurement. One then computes that, in the Bell state basis,
when discarding off-diagonal terms in ρ, the effect of this qubit
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decoherence is equivalent to replacing Eq. (6) by

d

dt
pBe+ = −�1 + �2

2
pBe+ + �1

2
pBo− + 2�m + �2

4
ξ,

d

dt
pBo− = −2�m + �1 + �2

2
pBo− + �1

2
pBe+ + �2

4
ξ,

d

dt
ξ = −�m + �2

2
ξ + �2

2
pBe+ + 2�m + �2

2
pBo− .

Here, we have defined

�m = rparity

Td

,

�1 = 1

2T A
1

+ 1

2T B
1

,

�2 = rdephasing

Td

+ 1

2T A
1

+ 1

2T B
1

+ 1

T A
φ

+ 1

T B
φ

.

Solving for the steady state gives

pBe+ = (1 + δ̃)�1/�2 + (δ̃)2

4(1 + δ̃)�1/�2 + (1 + δ̃)2
,

with δ̃ = 2rparity

Td�2
+ 1. (8)

From this expression, the optimum value of α can easily
be computed numerically. We have simulated the actual
system dynamics, i.e., adding qubit decoherence (7) to (3), for
different values of η and Td/T1 (we have taken T A

1 = T B
1 = T1

and T
A,B
φ = ∞). For α we have taken the value that maximizes

Eq. (8), as well as a few values close to it in order to confirm
that we hit close to the actual optimum fidelity. For each set of
parameters, we have performed 5000 Monte Carlo simulations
in order to estimate the achieved fidelity. Figure 6 shows these
simulation results. The value of α obtained by maximizing
Eq. (8) appears to indeed be close to optimal. While the above
simple scheme is certainly not the optimal feedback strategy,
the simulation results on Fig. 6 are indicative of the minimal
entanglement achievable with our remote parity measurement.
They show that if, e.g., 1000 measurements can be performed
during a qubit lifetime (comparing 100 μs lifetime to 100 ns
duration of the most demanding measurement operation) and
transmission fidelity reaches about 85%, then the steady-state
entanglement fidelity that is stabilized for all times can be
pushed up to 98%.

V. EXPERIMENTAL CONSIDERATIONS

All the required operations for the above proposal have been
individually implemented within the framework of quantum
superconducting circuits, where the cavity-qubit setting is
the standard minimal building block. The strong dispersive
coupling of a transmon qubit to a high-Q cavity mode [32]
provides universal controllability of the state of the quantum
harmonic oscillator modeling the cavity mode [33,34]. This
controllability has been experimentally illustrated with circuit
QED setups [24,35]. Such a coupling enables us to prepare
the probe field in a cat state and to perform the CNOT gates
UA and UB of Eq. (1) between the qubits and associated
intracavity fields. Recent experiments realizing a variable cou-
pling between cavity modes and a transmission line [21–23]
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FIG. 6. Fidelities to the Bell state |Be
+〉 = (|00〉 + |11〉)/√2

obtained by our remote entanglement feedback stabilization scheme
in the presence of individual qubit decay (7). Here, we have assumed
T A

1 = T B
1 = T1 and T

A,B
φ = ∞. For each value of η (transmission

fidelity of the meter quantum channel for the remote parity mea-
surement) and of T1/Td (qubit characteristic lifetime expressed in
number of measurement iterations), we have estimated the optimal
value of α by maximizing Eq. (8). We have then run 5000 Monte
Carlo simulations with values of α up to two times larger or smaller
than this estimated optimum and selected the best result. The latter
turned out to be close to the computed α by optimizing Eq. (8). To
estimate steady-state fidelity, we have averaged the fidelity obtained
between t = 3T1 and t = 6T1, when starting at t = 0 from |Be

+〉. We
have checked that this initial state does not affect the steady state; but
starting close to the expected steady state allows us to minimize the
transient effects.

provide the possibility of catching the propagating microwave
field, performing the required gate between the qubit and the
cavity field, and finally releasing back the cavity photons [36].
Finally, while the measurement of photon-number parity has
also been realized in a similar setup [37], one can further
simplify the protocol by letting UB map the intracavity field
to coherent states |±√

ηα〉 instead of the cat states |C±√
ηα

〉.
This would allow us to replace a photon-number parity
measurement by a simple homodyne detection of the released
field using a parametric amplifier [20]. A single measurement
duration in such an experimental realization depends mainly
on the time required to perform the operations UA and UB .
As explained in Refs. [33,34] this gate time is roughly the
inverse of the dispersive coupling strength. Recent experiments
where this coupling strength is more than three orders of
magnitude larger than both the qubit and the cavity decay rates
[24,35,38] indicate that high entanglement fidelities should be
achievable whenever a transmission efficiency of more than
70% is reached.

VI. CONCLUSION

We have shown that it is possible to perform a near DP-QND
measurement of the parity of two distant qubits despite an
important loss through the transmission channel between them.
By preparing the probe field in a quantum superposition of
two coherent states with opposite phases, we avoid backaction
of the probe losses on the target qubits’ state inside any
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parity subspace. Indeed, such losses mainly decrease the
measurement strength but barely affect its DP-QND character.
Therefore, even with an inefficient transmission channel, by
repeating the measurement many times one efficiently projects
the joint qubits state onto a definite-parity subspace. This
enables not only to deterministically and hardware-efficiently
prepare an entangled state of two distant qubits but, combined
with a quantum feedback strategy, it also protects such a
state against decoherence channels and systematic errors.
The operations required to perform this loss-tolerant parity
measurement are within the reach of state-of-the-art experi-
ments. Their implementation will lead to an important step
forward for implementing quantum teleportation protocols in
a loss-tolerant way, and more particularly towards the modular
architecture solution for large-scale quantum information
processors [4].
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APPENDIX A: NECESSARY CONDITION FOR
LOSS-TOLERANT DP-QND MEASUREMENTS

We prove that it is impossible to design the measurement
setup of Fig. 1(a) in order to obtain a DP-QND parity
measurement under arbitrary channel noise, i.e., when Ek in
Fig. 1(b) can be arbitrary.

(S0) Note that any unconditioned local unitaries on the
qubits along the measurement chain can be merged into UA

and UB . Indeed, even if physically we apply such ŨA to qubit
A after UB , this ŨA commutes with UB since it acts as identity
on both |qB〉 and |ψ〉p. We will thus assume without loss of
generality a setting with just two arbitrary unitaries UA and
UB , which make the arbitrary probe interact respectively with
|qA〉 and |qB〉.

(S1) To keep invariant the even-parity states |00〉A,B and
|11〉A,B , we have to take UA such that UA|0〉A|ψp〉 = |0〉A|φ0〉p
and UA|1〉A|ψp〉 = |1〉A|φ1〉p for some |φ0〉, |φ1〉. Indeed
consider a contrario that, e.g., an initial |0〉A was mapped
by UA into a state involving |1〉A. Then, since no further action
is applied on qubit A, at the end of the nominal measurement
chain there would unavoidably be a nonzero probability to end
up in a state involving this |1〉A, which would contradict the
DP-QND objective for an initial state |00〉A,B .

(S2) If we chose |φ1〉 = eiθ |φ0〉 for some θ , then we could
rewrite

UA|qA〉|ψp〉 = (Zθ |qA〉)|φ0〉p,

with Zθ acting only on qubit A and defined by Zθ |0〉A =
|0〉A, Zθ |1〉A = eiθ |1〉A. This clarifies that the probe state |φ0〉p
would carry no information about the state of qubit A, hence
we can get no parity information by later measuring the probe
system at B.

(S3a) On the other hand, if we have |φ1〉 �= eiθ |φ0〉, then it
is always possible to write a noise channel which keeps |φ0〉 in
place but, conditionally on the unknown state |qenv〉 of some
environment variable, moves |φ1〉. In other words, referring

to Fig. 1(b),

E1|φ0〉p = |φ0〉p and E1|φ1〉p = |φ2〉p �= |φ1〉p.

(S3b) Consider now what happens to the initial even-parity
state (|00〉 + |11〉)A,B/

√
2. After UA has been applied, the

qubits are entangled with the probe in the state (|00〉A,B |φ0〉p +
|11〉A,B |φ1〉p)/

√
2. To have a DP-QND measurement, the

remaining action UB has to disentangle (|00〉 + |11〉)A,B/
√

2
from the probe before detection. In the case where E1 is not
applied (no channel loss), we thus need

UB |0〉B |φ0〉p = |0〉B |φb〉p and UB |1〉B |φ1〉p = |1〉B |φb〉p
(A1)

for some |φb〉. In the case where E1 in contrast is applied by
the lossy channel, we need

UB |0〉B |φ0〉p = |0〉B |φa〉p and UB |1〉B |φ2〉p = |1〉B |φa〉p
(A2)

for some |φa〉. For the experiment we must select a unique
UB , without knowing the environment state |qenv〉 i.e., without
knowing whether E1 was applied or not. The left parts of
Eqs. (A1) and (A2) thus impose |φb〉 = |φa〉. But then the
second parts of Eqs. (A1) and (A2) lead to a contradiction, as
they require the unitary UB to map two different initial states
|1〉B |φ1〉p �= |1〉B |φ2〉p onto the same final state.

This shows the impossibility for the measurement to be
DP-QND with respect to the “conditional E1” channel noise.
We have taken care to keep our construction fully general,
such that we can conclude the following: Whatever our design
for |ψp〉, UA, and UB , we will obtain a measurement setup
either which gains no parity information, or for which some
particular noise actions E1 can destroy the DP-QND character
and perturb definite-parity states.

For example, in our proposed construction with CNOT

gates:
(1) For S1 we have |φ0〉 = |0〉, |φ1〉 = |1〉; we are obvi-

ously in the situation of S3a, not of S2.
(2) Regarding S3a, the phase-flip channel σz for instance

would keep |0〉 at |0〉 but move |1〉 to −|1〉. Then to save the
situation UB would have to satisfy in particular UB |1〉B |1〉p =
−UB |1〉B |1〉p, which is not possible.

This example shows that a DP-QND parity measurement is
not possible if the transmitted probe state can be subject to both
bit flip and phase flip errors. In this paper, we discussed the
case, motivated by realistic experimental conditions, where the
transmission channel only subjects the probe to an unknown
number of bit flips (probe’s cat states). Consider indeed a
situation where the transmission channel subjects the probe to
an unknown number n of unitary operations of the same type
UC , where (UC)N equals identity for some integer N . Now
let UA and UB apply conditional V gates on the probe, where
V = (UC)N/2. Then all the operations UA, UB , UC commute
with each other, and an initial probe state |ψ0〉p gets mapped
just before detection onto

(UC)N/2(UC)N/2Un
C |ψ0〉p = Un

C |ψ0〉p
if the target qubits have even parity, or onto

(UC)N/2Un
C |ψ0〉p
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if they have odd parity, while the target qubits remain
unaffected. Thus not knowing n makes the final probe state
uncertain, as with the bit flip, implying that detection results
will not allow us to perfectly discriminate the parity. But the
probe ends up in the same (unknown) state for all even-parity
states of the target qubit; and it ends up in another same
state for all odd-parity states of the target qubit. This ensures
preservation of the DP-QND property under channel losses.

APPENDIX B: KRAUS OPERATORS

Here, we summarize the calculations that lead to the Kraus
operators of Eq. (2). We start with an initial joint state of the
two qubits, the probe field, and the ancillary mode modeling
the transmission loss, given by

|ψ0〉 = (c00|00〉A,B + c11|11〉A,B + c01|01〉A,B

+ c10|10〉A,B)|C+
α 〉p|0〉env.

Following the definition of the unitary operators UA, UB , and
U

η

BS in Eq. (1), just before performing the photon-number
parity measurements of the probe and ancillary fields, this
joint state has evolved to

|ψ〉 = c00

2N+
α

|00〉A,B [|C+√
ηα

〉p|C+√
1−ηα

〉envN+√
ηα
N+√

1−ηα

+ |C−√
ηα

〉p|C−√
1−ηα

〉envN−√
ηα
N−√

1−ηα
]

+ c11

2N−
α

|11〉A,B[|C+√
ηα

〉p|C+√
1−ηα

〉envN−√
ηα
N+√

1−ηα

+ |C−√
ηα

〉p|C−√
1−ηα

〉envN+√
ηα
N−√

1−ηα
]

+ c01

2N+
α

|01〉A,B[|C+√
ηα

〉p|C−√
1−ηα

〉envN−√
ηα
N−√

1−ηα

+ |C−√
ηα

〉p|C+√
1−ηα

〉envN+√
ηα
N+√

1−ηα
]

+ c10

2N−
α

|10〉A,B[|C+√
ηα

〉p|C−√
1−ηα

〉envN+√
ηα
N−√

1−ηα

+ |C−√
ηα

〉p|C+√
1−ηα

〉envN−√
ηα
N+√

1−ηα
].

Here, we have used the fact that

|±β〉 = N+
β

2
|C+

β 〉 ± N−
β

2
|C−

β 〉

for β = √
ηα and β = √

1 − ηα. Detecting the probe and
the ancillary fields both in even parity leads to applying the
following projection operator as the measurement backaction:

�+,+ = IdA,B ⊗ �even
p ⊗ �even

env

= IdA,B ⊗
( ∞∑

k=0

|2k〉〈2k|p
)

⊗
( ∞∑

k=0

|2k〉〈2k|env

)
,

with Id being the identity map. Since |C+
β 〉 has even parity and

|C−
β 〉 has odd parity, the projected wave function can be simply

read off the above expression,

�+,+|ψ〉 =
N+√

1−ηα

2

(
c00

N+√
ηα

N+
α

|00〉 + c11

N−√
ηα

N−
α

|11〉
)

A,B

|C+√
ηα

〉p|C+√
1−ηα

〉env.

In a similar way, we have the following projected wave
functions for other measurement outcomes:

�+,−|ψ〉 =
N−√

1−ηα

2

(
c01

N−√
ηα

N+
α

|01〉 + c10

N+√
ηα

N−
α

|10〉
)

A,B

|C+√
ηα

〉p|C−√
1−ηα

〉env,

�−,+|ψ〉 =
N+√

1−ηα

2

(
c01

N+√
ηα

N+
α

|01〉 + c10

N−√
ηα

N−
α

|10〉
)

A,B

|C−√
ηα

〉p|C+√
1−ηα

〉env

�−,−|ψ〉 =
N−√

1−ηα

2

(
c00

N−√
ηα

N+
α

|00〉 + c11

N+√
ηα

N−
α

|11〉
)

A,B

|C−√
ηα

〉p|C−√
1−ηα

〉env.

This corresponds to the Kraus operators as defined by Eq. (2).
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