A. Subramanian, P. Tamayo, and V. K. Mootha, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.43, pp.15545-15550, 2005.

R. Mclendon, A. Friedman, and D. Bigner, Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, vol.455, issue.7216, pp.1061-1068, 2008.

S. Jones, X. Zhang, and D. W. Parsons, Core signaling pathways in human pancreatic cancers revealed by global genomic analyses, Science, vol.321, issue.5897, pp.1801-1806, 2008.

J. J. Goeman, . Van-de, S. A. Geer, D. Kort, and F. , A global test for groups of genes: testing association with a clinical outcome, Bioinformatics, vol.20, issue.1, pp.93-99, 2004.

J. J. Goeman, J. Oosting, and C. Am, Testing association of a pathway with survival using gene expression data, Bioinformatics, vol.21, issue.9, pp.1950-1957, 2005.

D. Liu, L. X. Ghosh, and D. , Semiparametric regression of multidimensional genetic pathway data: Least-squares kernel machines and linear mixed models, Biometrics, vol.63, issue.4, pp.1079-1088, 2007.

D. Liu, D. Ghosh, and X. Lin, Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models, BMC bioinformatics, vol.9, issue.1, p.292, 2008.

T. Cai, G. Tonini, and X. Lin, Kernel Machine Approach to Testing the Significance of Multiple Genetic Markers for Risk Prediction, Biometrics, vol.67, issue.3, pp.975-986, 2011.

X. Lin, T. Cai, and M. C. Wu, Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies, Genetic Epidemiology, vol.35, issue.7, pp.620-631, 2011.

M. C. Wu, S. Lee, and T. Cai, Rare-variant association testing for sequencing data with the sequence kernel association test, The American Journal of Human Genetics, vol.89, issue.1, pp.82-93, 2011.

M. C. Wu, A. Maity, and S. Lee, Kernel machine snp-set testing under multiple candidate kernels, Genetic epidemiology, vol.37, issue.3, pp.267-275, 2013.

J. A. Sinnott and T. Cai, Omnibus risk assessment via accelerated failure time kernel machine modeling, Biometrics, vol.69, issue.4, pp.861-873, 2013.

B. P. Hejblum, J. Skinner, and R. Thiébaut, Time-Course Gene Set Analysis for Longitudinal Gene Expression Data, PLOS Computational Biology, vol.11, issue.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203446

K. S. Panageas, L. Ben-porat, and M. N. Dickler, When you look matters: the effect of assessment schedule on progression-free survival, Journal of the National Cancer Institute, vol.99, issue.6, pp.428-432, 2007.

T. Burzykowski, M. Buyse, and P. Mj, Evaluation of tumor response, disease control, progressionfree survival, and time to progression as potential surrogate end points in metastatic breast cancer, Journal of Clinical Oncology, vol.26, issue.12, pp.1987-1992, 2008.

K. R. Broglio and D. A. Berry, Detecting an overall survival benefit that is derived from progression-free survival, Journal of the National Cancer Institute, vol.101, issue.23, p.1642, 2009.

M. Buyse, D. J. Sargent, and E. D. Saad, Survival is not a good outcome for randomized trials with effective subsequent therapies, Journal of Clinical Oncology, vol.29, issue.35, pp.4719-4720, 2011.

E. Amir, B. Seruga, and R. Kwong, Poor correlation between progression-free and overall survival in modern clinical trials: are composite endpoints the answer?, European Journal of Cancer, vol.48, issue.3, pp.385-388, 2012.

B. Sherrill, J. A. Kaye, and R. Sandin, Review of meta-analyses evaluating surrogate endpoints for overall survival in oncology, OncoTargets and therapy, vol.5, p.287, 2012.

J. P. Fine, H. Jiang, and R. Chappell, On semi-competing risks data, Biometrika, vol.88, issue.4, pp.907-919, 2001.

R. J. Cook and J. F. Lawless, Marginal analysis of recurrent events and a terminating event, Statistics in medicine, vol.16, issue.8, pp.911-924, 1997.

D. Ghosh and D. Lin, Nonparametric analysis of recurrent events and death, Biometrics, vol.56, issue.2, pp.554-562, 2000.

D. Ghosh and D. Lin, Marginal regression models for recurrent and terminal events, Statistica Sinica, vol.12, issue.3, pp.663-688, 2002.

H. Jiang, J. P. Fine, and R. Chappell, Semiparametric analysis of survival data with left truncation and dependent right censoring, Biometrics, vol.61, issue.2, pp.567-575, 2005.

D. Ghosh, Semiparametric inferences for association with semi-competing risks data, Statistics in medicine, vol.25, issue.12, pp.2059-2070, 2006.

L. Peng and J. P. Fine, Regression modeling of semicompeting risks data, Biometrics, vol.63, issue.1, pp.96-108, 2007.

L. Lakhal, L. P. Rivest, and B. Abdous, Estimating survival and association in a semicompeting risks model, Biometrics, vol.64, issue.1, pp.180-188, 2008.

J. J. Hsieh, W. W. , A. Ding, and A. , Regression analysis based on semicompeting risks data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.70, issue.1, pp.3-20, 2008.

H. Fu, Y. Wang, and J. Liu, Joint modeling of progression-free survival and overall survival by a bayesian normal induced copula estimation model, Statistics in medicine, vol.32, issue.2, pp.240-254, 2013.

L. Liu, R. A. Wolfe, and X. Huang, Shared frailty models for recurrent events and a terminal event, Biometrics, vol.60, issue.3, pp.747-756, 2004.

Y. Ye, J. D. Kalbfleisch, and D. E. Schaubel, Semiparametric analysis of correlated recurrent and terminal events, Biometrics, vol.63, issue.1, pp.78-87, 2007.

D. Zeng and D. Lin, Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events, Biometrics, vol.65, issue.3, pp.746-752, 2009.

J. Xu, J. D. Kalbfleisch, and B. Tai, Statistical analysis of illness-death processes and semicompeting risks data, Biometrics, vol.66, issue.3, pp.716-725, 2010.

D. Zeng, Q. Chen, and M. H. Chen, Estimating treatment effects with treatment switching via semicompeting risks models: an application to a colorectal cancer study, Biometrika, vol.99, issue.1, pp.167-184, 2012.

Y. Zhang, M. H. Chen, and J. G. Ibrahim, Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching, Lifetime data analysis, vol.20, issue.1, pp.76-105, 2014.
DOI : 10.1007/s10985-013-9254-8

URL : http://europepmc.org/articles/pmc3745804?pdf=render

C. Hu and A. Tsodikov, Joint modeling approach for semicompeting risks data with missing nonterminal event status, Lifetime data analysis, vol.20, issue.4, pp.563-583, 2014.
DOI : 10.1007/s10985-013-9288-y

URL : http://europepmc.org/articles/pmc4101077?pdf=render

K. H. Lee, S. Haneuse, and D. Schrag, Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.64, issue.2, pp.253-273, 2015.
DOI : 10.1111/rssc.12078

URL : http://europepmc.org/articles/pmc4427057?pdf=render

M. H. Gail, L. A. Brinton, and D. P. Byar, Projecting individualized probabilities of developing breast cancer for white females who are being examined annually, Journal of the National Cancer Institute, vol.81, issue.24, pp.1879-1886, 1989.
DOI : 10.1093/jnci/81.24.1879

B. Schölkopf, A. Smola, and K. R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural computation, vol.10, issue.5, pp.1299-1319, 1998.

G. Kimeldorf and G. Wahba, A correspondence between bayesian estimation on stochastic processes and smoothing by splines, The Annals of Mathematical Statistics, vol.41, issue.2, pp.495-502, 1970.
DOI : 10.1214/aoms/1177697089

URL : https://doi.org/10.1214/aoms/1177697089

B. Scholkopf and A. Smola, Learning with kernels, 2002.

D. Commenges and P. K. Andersen, Score Test of Homogeneity for Survival Data, Lifetime data analysis, vol.1, pp.145-156, 1995.
DOI : 10.1007/bf00985764

M. Braun, Spectral properties of the kernel matrix and their application to kernel methods in machine learning, 2005.

O. I. Olopade, G. Ta, and R. Nanda, Advances in breast cancer: Pathways to personalized medicine, Clinical Cancer Research, vol.14, issue.24, pp.7988-7999, 2008.
DOI : 10.1158/1078-0432.ccr-08-1211

URL : http://clincancerres.aacrjournals.org/content/14/24/7988.full.pdf

M. J. Van-de-vijver, Y. D. He, . Van't, and L. J. Veer, A gene-expression signature as a predictor of survival in breast cancer, The New England journal of medicine, vol.347, issue.25, pp.1999-2009, 2002.

A. S. Oh, L. A. Lorant, and J. N. Holloway, Hyperactivation of MAPK induces loss of ERalpha expression in breast cancer cells, Molecular endocrinology, vol.15, issue.8, pp.1344-1359, 2001.

A. E. Teschendorff, S. Gomez, and A. Arenas, Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules, BMC cancer, vol.10, issue.1, 2010.

M. B. Buck and C. Knabbe, TGF-Beta Signaling in Breast Cancer, Annals of the New York Academy of Sciences, vol.1089, issue.1, pp.119-126, 2006.

M. Barcellos-hoff and R. J. Akhurst, Transforming growth factor-? in breast cancer: too much, too late, Breast Cancer Research, vol.11, issue.1, p.202, 2009.
DOI : 10.1186/bcr2224

URL : http://europepmc.org/articles/pmc2687712?pdf=render

F. T. Harrington and D. , Counting Processes and Survival Analysis, vol.169, 1991.