High-Speed Highway Scene Prediction Based on Driver Models Learned From Demonstrations

Abstract : One of the key factors to ensure the safe operation of autonomous and semi-autonomous vehicles in dynamic environments is the ability to accurately predict the motion of the dynamic obstacles in the scene. In this work, we show how to use a realistic driver model learned from demonstrations via Inverse Reinforcement Learning to predict the long-term evolution of highway traffic scenes. We model each traffic participant as a Markov Decision Process in which the cost function is a linear combination of static and dynamic features. In particular, the static features capture the preferences of the driver while the dynamic features, which change over time depending on the actions of the other traffic participants, capture the driver's risk-aversive behavior. Using such a model for prediction enables us to explicitly consider the interactions between traffic participants while keeping the computational complexity quadratic in the number of vehicles in the scene. Preliminary experiments in simulated and real scenarios show the capability of our approach to produce reliable, human-like scene predictions.
Type de document :
Communication dans un congrès
Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC 2016), Nov 2016, Rio de Janeiro, Brazil. 2016, 〈10.1109/ITSC.2016.7795546〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01396047
Contributeur : David Sierra González <>
Soumis le : dimanche 13 novembre 2016 - 17:22:34
Dernière modification le : vendredi 22 décembre 2017 - 11:22:16
Document(s) archivé(s) le : mardi 21 mars 2017 - 11:29:01

Fichier

main_hal_v1.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

David Sierra González, Jilles Dibangoye, Christian Laugier. High-Speed Highway Scene Prediction Based on Driver Models Learned From Demonstrations. Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC 2016), Nov 2016, Rio de Janeiro, Brazil. 2016, 〈10.1109/ITSC.2016.7795546〉. 〈hal-01396047〉

Partager

Métriques

Consultations de la notice

479

Téléchargements de fichiers

143