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Abstract

Background: Transcriptome reconstruction, defined as the identification of all protein isoforms that may be
expressed by a gene, is a notably difficult computational task. With real data, the best methods based on RNA-seq
data identify barely 21 % of the expressed transcripts. While waiting for algorithms and sequencing techniques to
improve „ as has been strongly suggested in the literature „ it is important to evaluateassisted transcriptome
prediction; this is the question of how alternative transcription in one species performs as a predictor of protein
isoforms in another relatively close species. Most evidence-based gene predictors use transcripts from other species
to annotate a genome, but the predictive power of procedures that use exclusively transcripts from external species
has never been quantified. The cornerstone of such an evaluation is the correct identification of pairs of transcripts
with the same splicing patterns, calledsplicing orthologs.

Results: We propose a rigorous procedural definition of splicing orthologs, based on the identification of all ortholog
pairs of splicing sites in the nucleotide sequences, and alignments at the protein level. Using our definition, we
compared 24 382 human transcripts and 17 909 mouse transcripts from the highly curated CCDS database, and
identified 11 122 splicing orthologs. In prediction mode, we show that human transcripts can be used to infer over
62 % of mouse protein isoforms. When restricting the predictions to transcripts known eight years ago, the
percentage grows to 74 %. Using CCDS timestamped releases, we also analyze the evolution of the number of
splicing orthologs over the last decade.

Conclusions: Alternative splicing is now recognized to play a major role in the protein diversity of eukaryotic
organisms, but definitions of spliced isoform orthologs are still approximate. Here we propose a definition adapted to
the subtle variations of conserved alternative splicing sites, and use it to validate numerous accurate orthologous
isoform predictions.
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Background
The knowledge of all protein isoforms that may be
expressed by a gene is fundamental. Recently, several
computational methods have been proposed for tran-
scriptome reconstruction that use RNA-seq data for exon
identification, and expression levels data for transcript
assembly [1, 2]. While exon identification performs quite
well, transcript assembly remains difficult for complex
transcriptomes. As shown in [2], the best-performing
computational methods identified at most 21 % of spliced
protein-coding transcripts fromH. sapiens, and transcript
detection remains low even with very high sequencing
coverage, leading the authors to conclude that improved
results would have to wait for technological advances.
Those findings were confirmed by several other studies
[3…5], that include methods recently developed such as
StringTie [6].

Given these limitations ofab initio transcript predic-
tion, it is natural to investigate assisted transcriptome
reconstruction, in which the knowledge of transcript
structures is transferred from one species to another:
since transcripts provide a road-map of the successive
links between exons, it should be possible to distinguish
transcripts that may be expressed from those that may
not, by analyzing the sequence of the target genes.

An essential problem is the assessment of the pre-
dictions. Confirmation of the prediction that •transcript
t may be expressed in the target speciesŽ is only pos-
sible through experimental validation, which can be
a long and costly process, since many transcripts are
detectable only in specific cells, under specific condi-
tions [7]. Gene predictors that make explicit use of exter-
nal evidence to predict eukaryotic gene structure have
been around since the turn of the century [8], and with
the discovery of alternative transcripts in recent years,
hundreds of thousands of predicted isoforms are now
available in databases [9]. For example, as of June 2016,
Felis catushad 32 842 predicted isoforms in the Ref-
Seq database, of which 365 are confirmed, andCanis
lupus familiaris had 45 430 predicted isoforms of which
1 644 are confirmed. These predictions were made by
the Gnomon predictor, described in an unpublished
paper [10], and whose performance is unknown, espe-
cially for predictions that rely exclusively on external
evidence.

In order to evaluate the predictive power of transcript
annotation transfer, it is necessary to identifysplicing
orthologs, loosely defined as transcripts from ortholog
genes with similar splicing patterns. Zambelli et al. [11],
introduced the concept and gave three possible definitions
that yielded estimates ranging from 31 to 86 % for the per-
centage of human transcripts that have a splicing ortholog
in mouse. This wide range of estimates is an indicator of
how the concept is still a work-in-progress. A subsequent

paper of Fong et al. [9] simplifies the definition of splicing
orthologs as •. . . all protein-coding exons in the two pro-
teins can be paired with 90 % overlap in lengths of both
exons.Ž. This is clearly an over-simplification that ignores,
among other things, nearby alternative donor or acceptor
splice sites [12].

In this study, we revisit the concept of splicing orthology
and we give a comprehensive assessment of the perfor-
mance of assisted transcriptome reconstruction using the
human to predict mouse, andvice versa.

Methods
Our experimental set-up is based on a procedural def-
inition of splicing orthologs that is concurrently imple-
mented by two procedures. Ourpredictoruses transcripts
from a known species to predict transcripts in a target
species, and for evaluation purposes, identifies putative
pairs of orthologous transcript isoforms based solely on
nucleotide sequence evidence. Ourcontroller identifies
putative pairs of orthologous protein isoforms between
human and mouse using amino acid sequences and posi-
tions of exon junctions.

Splicing orthologs
Transcripts from orthologous genes with differing splic-
ing patterns could have easily identifiable differences in
the number or identity of their exons. However, defin-
ing splicing orthology can be more difficult due to the
presence of alternative donor and acceptor splice sites,
where exons are elongated or truncated, often by a very
few nucleotides. Within a gene, these exon isoforms [13]
overlap and have different exon-intron border(s).

Across species, we defineorthologous exon isoformsas
orthologous exons that have conserved exon-intron bor-
ders. Using this concept,splicing orthologsare defined as
transcripts of orthologous genes, whose exons are orthol-
ogous exon isoforms that appear in the same order in each
gene, and that code for similar proteins.

In the ideal situation where all splicing orthologs are
conserved across species in one-to-one orthologous gene
pairs, all exons „ with their flanking intronic sequences „
should be best reciprocal hits, and the alignments should
preserve exon-intron borders. Each protein would have
a perfect matchthat should be aunique best reciprocal
hit, the alignments should preserve the positions of exon
junctions, and be without gaps in the near vicinity of
junctions.

The predictor
Given a pair of orthologous genes, the first task of the pre-
dictor is to establish a common reference sequence [14]
for the set of all transcripts in both the human and mouse.
Our solution is based on the concept ofblocks, which
are alignments of human and mouse exon segments that
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are either contained in, or disjoint from, each human or
mouse transcript.

Each block has a label and can be flanked bysignals: start
and stop codons, donor and acceptor splice sites. Using
block labels, the symbols •[• and •]• to indicate start and
stop codons, and •<• and •>• to indicate the intronic part
of donor and acceptor splice sites, each transcript can be
represented as a string. Thegene modelof a set of tran-
scripts is the ordered string of its blocks and signals, and
a donor block(resp.acceptor block) is a block that has a
donor signal at its 3• end (resp. an acceptor signal at its
5• end) in the gene model. Figure 1 presents an example
with the CREM and Crem orthologous genes of human
and mouse [Accession numbers ENSG00000095794 and
ENSMUSG00000063889].

To ensure internal exons best reciprocal hit property,
every human and mouse sequence in a block is Blasted, in
the orthologous gene, using flanking genomic sequences
of length 20. Further details on the predictor algorithm
can be found in Additional file 1.

The fact that all blocks can be found by a Blast search
allows the predictor to simulate a pure predicting mode,
that does not have any prior knowledge of the target
species transcripts. Given a gene modelM, the predictor
reports all blocks and signals that were found in the target
gene, and reports its successes as a substringSof the gene
model.

This paper predicts in flexible mode [2, 11], where
orthologous transcripts must have the same splicing
pattern, but the first and last exons are only required to

Fig. 1 Gene models and transcripts. In the CCDS Database [18], as of June 2016, there were 18 CREM human and 12 Crem mouse transcripts with
unique splicing patterns. The common reference sequence has blocks labeled from A to U. The human gene model is at the top of the figure,
followed by the sub-sequence of blocks and signals found in the mouse. The block representation and CCDS number is given for each transcript.
Note that block O does not exist in the mouse gene, and block F is not in the human model, since block F is not found in any known human
transcript. Of the 18 human transcripts, 15 are executable … meaning that they could be expressed …, and three are not (inred) because they use
block O. The executable transcripts are further classified as found (5 of them, inblack) and paired with a mouse transcript, or yet-to-be-found (10 of
them, ingreen). All these predictions are confirmed by the controller. Since 5 mouse transcripts are correctly identified, and 12 mouse transcripts are
currently known, the predictor successfully identifies 5/12, or 42 % of the mouse transcripts. As more mouse transcripts are discovered, this
proportion may increase with future releases of the CCDS database
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have orthologous internal exon-intron borders. A tran-
script is said to beexecutableby the target gene if its
donor and acceptor blocks are inS. The primary task of
the predictor is to classify transcripts as executable or not
executable.

In the simulation context of this paper, a secondary task
of the predictor is to classify executable transcripts of the
known species intofound or yet-to-be-found, using the
transcripts of the target species. When a known transcript
k has a matcht in the list of transcripts of the target
species, the predictor reports a pair of putative ortholog
transcripts (k, t). Thus the output of the predictor is a list
of transcript pairs, a list of yet-to-be-found transcripts,
and a list of non-executable transcripts.

The controller
The controller outputs a list of putative human/mouse
protein ortholog pairs whose underlying transcripts have
the same splicing patterns. For each gene, the controller
constructs a list of candidate pairs, that are unique best
reciprocal hits among protein isoforms of the gene with
the same number of exons.

Alignments are done using a semi-global exact align-
ment [15], that does not penalize left or right trail-
ing gaps, and are scored with the Blosum62 scoring
matrix. For a candidate pair to be accepted, the align-
ment must preserve all exon junction positions, and
be without gaps in the near vicinity (v = 2 amino
acids) of junctions, as illustrated in Fig. 2. Insertions and
deletions within an exon are allowed. The parameterv
was experimentally determined to maximize the agree-
ment between the predictor and the controller: there is
no easy solution since gaps at or near exon junctions
can be the result of insertions or deletions at the pro-
tein level, or evidence of alternative donor or acceptor
sites.

Finally, the right segment of the alignment of the first
exon of each transcript, and the left segment of the align-
ment of the last exon, are tested for conservation by
requiring non-negative Blosum62 scores, over a maxi-
mum of 10 amino acids. This last step is necessary because
the position of the first (or last) exon junction can be
preserved even when the first (or last) exons are different.

Validation
We implemented a co-validation process between the
two procedures, with the principle that both procedures
should agree on their conclusions: disagreements are
treated as errors.

The output of the predictor is compared to the con-
troller list:

€ A transcript pair found by the predictor that also
belong to the controller list is labeledsplicing
orthologs.

€ A transcript k classified as yet-to-be-found, for which
the controller list does not contain any entry with
transcript k, is labeledconfirmed yet-to-be-found.

€ A transcript k classified as non-executable, for which
the controller list does not contain any entry with
transcript k is labeledconfirmed species-specific.

Predictions that are not confirmed are calledunresolved.
There exist three types of unresolved predictions:

€ Found by the predictor, but not contained in the
controller list.

€ Yet-to-be-found by the predictor, but contained in
the controller list.

€ Species-specific by the predictor, but contained in the
controller list.

The number of each of these types of errors are reported
and discussed in the next section.

Results and Discussion
All 15 513 one-to-one ortholog gene pairs with at least
one CCDS isoform in human and in mouse were selected
in the Ensembl database [16], as of 07/30/2015, the date
of CCDS Release 19. Of these, the predictor could ana-
lyze 14 992 pairs of genes, totaling 24 382 human and
17,909 mouse transcripts with more than one exon. The
521 genes rejected at this stage had homology problems
such as duplicated or rearranged exons, or were not one-
to-one orthologs. The controller list computed on this set
has 11 904 pairs of putative protein ortholog pairs. When
transcripts from the same species are splicing orthologs,
thus having the same splicing pattern, both procedures

Fig. 2 Alignment validation. Requirements for candidate protein sequences to be included in the controller list
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keep the isoform with the smallest CCDS accession
number.

The first experiment predicts mouse transcripts using
human as the known species. In this case, there are about
36 % more transcripts in the known species than in the
target species. The second experiment mirrors the first,
with the known species (mouse) having fewer transcripts
than the target species (human). We also partitioned the
complete set of predictions according to the CCDS release
in which the transcript of the known species first appears.

We looked at the complete set of predictions, and also
at subsets ordered by their CCDS release numbers. The
results are analyzed from three different perspectives:
What is the difference between early and late predictions?
If we had made these predictions in the past how long
would it have taken to confirm them? What is the impact
of the size of the predicting set of transcripts? Unresolved
cases are discussed at the end of the section.

Early cohort has good precision and recall values
The predictor and controller analyzed 24 382 human tran-
scripts, and agreed in 23 165 cases (95.0 %). Table 1 gives
detailed results of the resolved predictions of mouse tran-
scripts using human transcripts. Precision and recall are
computed using the definitions established in [17] for
gene structure prediction programs, calledspecificityand
sensitivityin the original paper.

The precision value is the proportion of splicing
orthologs over the total number ofpositivepredictions,
defined here as the sum of the number of splicing
orthologs and and the number of confirmed yet-to-be-
found transcripts. For the first experiment we have a
precision of(11122)/(11122+ 5969)= 0.65.

The recall value is defined in the literature as the pro-
portion of correctly identified isoforms with respect to the
number of real isoforms, and is computed using the num-
ber of splicing orthologs over the number of known mouse
transcripts, and is(11122)/(17909)= 0.62.

The same precision and recall computations were done
after partitioning the predictions in three time-stamped
cohorts, each ending at a CCDS Mouse release. CohortC1
contains transcripts known at Release 2 (10/2006); cohort
C2 contains transcripts added to CCDS between Releases
3 and 7 (01/2011); cohortC3 contains transcripts added to
CCDS between Releases 8 and 19 (07/2015). Note that the
number of splicing orthologs is different for human and
mouse cohorts, but they all add up to the total of 11 122
transcript pairs: indeed, transcriptsk and t of a pair (k, t)
may belong to different cohorts.

For the first cohort, the precision and recall are, respec-
tively, 0.85 and 0.74. Meaning that 74 % of the tran-
scripts of the first mouse cohort are correctly predicted,
which is more than three times the 21 % obtained by
the purely computational methods tested in [2]. Precision
and recall fall with subsequent younger cohorts, and this
phenomenon is discussed in the next section.

Table 1 also shows the large increase in the proportion of
yet-to-be-found transcripts, from 0.12 in cohortC1 to 0.46
in cohort C3. This increase was expected, and is discussed
further in the next section.

On the other hand, the increase of the proportion of
human-specific transcripts, from 0.15 in cohortC1 to 0.4
in cohort C3 was unexpected. Possible explanations would
be that the first cohort is dominated by highly expressed
ubiquitous isoforms that were detected early; and/or that
species-specific transcripts are less expressed, and are

Table 1 Mouse transcripts as predicted by human transcripts

Predictions 10/2006 01/2011 07/2015

C1 C2 C3 All

a Splicing orthologs 7 307 3 000 815 11 122

b Confirmed yet-to-be-found 1 332 1 631 3 006 5 969

c Confirmed human-specific 1 644 1 793 2 637 6 074

Unresolved 612 294 112 1018

d Total number of analyzed transcripts 11 002 6 797 6 583 24 382

b/d Proportion of yet-to-be-found transcripts 0.12 0.24 0.46 0.24

c/d Proportion of human-specific transcripts 0.15 0.26 0.4 0.25

Mouse reality

e Splicing orthologs, by mouse cohorts 7 024 3 454 644 11 122

f Known mouse transcripts 9 486 6 348 2 075 17 909

Statistics

a/(a + b) Precision 0.85 0.65 0.21 0.65

e/f Recall 0.74 0.54 0.31 0.62
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found later; and/or that recent sequencing experiments
are more focussed on exploring the difference between
mouse and human.

Performances get better over time
Here we analyze the evolution over time of the number of
splicing orthologs, for a fixed number of positive predic-
tions, which drives the evolution of precision values. We
restricted this analysis to genes that have a large number
of isoforms, defined here as genes that have at least two
different CCDS isoforms in human and in mouse. This is a
subset of 4253 positive predictions of the first experiment.
Each cohort of this subset has respectively, 1464, 1404 and
1385 positive predictions.

Figure 3 plots the cumulative number of known splicing
orthologs, at the time of CCDS Releases 2, 4, 7, 10, 13, 16
and 19, each of these being a release of mouse transcripts.
(The data used is available in Additional file 2.) The black
curve corresponds to all known splicing orthologs, and
shows a healthy growth over time … more than doubling
its size … with a short standstill due to the very low num-
ber of new transcripts (n = 159) added in Release 13.
This means that, with the same set of 4253 positive pre-
dictions, we can expect the precision to increase with each
new Mouse release.

The three colored curves of Fig. 3 correspond to the
partition of the set of predictions in cohortsC1 to C3.
They start at different heights, with cohort C1 lead-
ing, but the fact that all curves have a similar shape,
notably in the last half of the time interval plotted,
was highly unexpected. Indeed, since the number of
positive predictions is fixed for each cohort, the num-
ber of cumulative confirmed predictions must eventually

become almost flat, with less and less predictions being
confirmed. We expected such a phenomenon, espe-
cially for cohort C1 whose precision is currently 74 %,
but the saturation effect is barely perceptible in this
subset.

A similar shape in cumulative curves indicates a similar
absolute growth over time. This means that, for the last
four releases, all cohorts have roughly the same number
of new splicing orthologs. Given that all three have simi-
lar numbers of positive predictions, we expect the number
of splicing orthologs to grow significantly in future CCDS
releases, at least for genes that have a large number of
isoforms.

The number of known species transcripts influences both
precision and recall
Table 2 presents the results of the prediction of human
transcripts using mouse transcripts. All the trends
observed in Table 1 are in the same direction, but with
varying intensity. Notably the precision values are higher,
which is consistent with the expectation that a smaller
set of predicting transcripts yields better chances of con-
firming a prediction. On the other hand, the recall values
are lower, since the number of transcripts to identify in
human is much larger.

Unresolved cases
Unresolved cases are the results of disagreements between
the predictor and the controller. Both procedures are
experimental, in the sense that they depend on parameters
and thresholds, and adjusting these values was done with
the goal of maximizing agreement, which is 95.0 % when
human transcript is used to predict mouse transcripts.

Fig. 3 Evolution of the number of splicing orthologs. These curves show the growth, over the years, of the number of known splicing orthologs
among the subset of orthologous genes that has at least two different isoforms for human and for mouse in the CCDS Release 19. Each data point
corresponds to a CCDS release of mouse transcripts: releases 2, 4, 7, 10, 13, 16 and 19. Theblackcurve shows the growth of the whole subset; the
bluecurve shows the growth of splicing orthologs whose human transcript was known in 2006; theredcurve shows the growth of splicing
orthologs whose human transcript was discovered between 2006 and 2011; and thegreencurve shows the growth of splicing orthologs whose
human transcript was discovered since 2011
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Table 2 Human transcripts as predicted by mouse transcripts

Predictions 10/2006 01/2011 07/2015

C1 C2 C3 All

a Splicing orthologs 7 024 3 454 644 11 122

b Confirmed yet-to-be-found 729 1 103 751 2 583

c Confirmed mouse-specific 1 074 1 322 595 2 991

Unresolved 554 390 70 1014

d Total number of analyzed transcripts 9 486 6 348 2 075 17 909

b/d Proportion of yet-to-be-found transcripts 0.08 0.17 0.36 0.14

c/d Proportion of mouse-specific transcripts 0.11 0.21 0.29 0.17

Human reality

e Splicing orthologs, by human cohorts 7 307 3 000 815 11 122

f Known human transcripts 11 002 6 797 6 583 24 382

Statistics

a/(a + b) Precision 0.91 0.76 0.46 0.81

e/f Recall 0.66 0.44 0.12 0.46

There are 1018 unresolved cases in total, since most of
them appear in both experiments. Of them, 369 ortholog
pairs are found by the predictor but not by the con-
troller and often reflect a built-in stringency of the con-
troller. In order to distinguish subtle modifications in
the regulation of alternative transcription, such asnag-
nag alternative transcripts [12] that add or delete one
amino acid next to an exon junction, the controller rejects
every pair that contains deletions in near junctions. Using
the nucleotide sequences, the predictor has an advan-
tage in deciding whether such insertion or deletion is a
true mutation. The controller can also detect frame-shifts,
where a single mutation can cause two dissimilar proteins
in different species. This is currently not verified by the
predictor.

There are 649 instances of pairs included in the con-
troller list for which one of the transcript is predicted
yet-to-be-found or species-specific by the predictor. They
are due to pairs incorrectly included in the controller, or
to the built-in stringencies of the predictor. In the case of
the controller, the main source of errors is the presence
of conserved alternative exons of the same length, yield-
ing two possible isoformsA and B in the human, andA�

and B� in the mouse. If the current state of the database
contains A and B�, the controller will pair them, but the
predictor will correctly detect that the transcripts differ
by one exon. When three of the four isoforms are present,
the unique best-hit property of the controller construc-
tion will resolve the conflict. A second source of errors
from the controller is the presence of very small first or
last exons, sometimes as small as 1 nucleotide.

Conclusion
We gave a rigorous high level definition of splicing orthol-
ogy and implemented it with a dual predictor/controller.
We applied the methods to the CCDS human and mouse
sets of isoforms and classified them into pairs of splicing
orthologs.

We also showed that, for the prediction that could have
been made eight years ago, human transcripts would have
correctly predicted 7 024 of the 9 486, thus 74 % of
the known mouse transcripts at that time. We showed
that this percentage is a lower bound, since predictions
for that cohort are still being confirmed with each new
release of the CCDS database, driven by the discovery
of predicted isoforms of genes that have a large number
of isoforms.

Our list of 11 122 confirmed splicing orthologs is
available in Additional file 3, together with their com-
mon block representations. It is intended as a bench-
mark for predictors, and as a data source for researchers
interested in studying the conservation of alternative
splicing.

Additional files

Additional file 1: PredictorAlgorithm. Description of the prediction
algorithm. (PDF 97 kb)

Additional file 2: Results.tar. Compressed folder containing csv files
listing the results. (GZ 3942 kb)

Additional file 3: TableS1. Data for Figure 3. (PDF 21 kb)
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