V. Vapnik, S. E. Golowich, and A. Smola, Support vector method for function approximation , regression estimation, and signal processing, Advances in Neural Information Processing Systems 9, 1997.

X. Wu, V. Kumar, J. Ross-quinlan, J. Ghosh, Q. Yang et al., Top 10 algorithms in data mining, Knowledge and Information Systems, vol.9, issue.2, 2007.
DOI : 10.1007/s10115-007-0114-2

T. Claveirole and M. D. De-amorim, WiPal and WScout, two hands-on tools for wireless packet traces manipulation and visualization, Proceedings of the third ACM international workshop on Wireless network testbeds, experimental evaluation and characterization, WiNTECH '08, 2008.
DOI : 10.1145/1410077.1410101

URL : https://hal.archives-ouvertes.fr/hal-01305178

A. Lecointre, D. Dragomirescu, and R. Plana, New methodology to design advanced mb-iruwb communication system, IEE Electronics Letters, vol.11, 2008.
DOI : 10.1049/el:20089501

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran et al., Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols, IEEE Wireless Communications and Networking Conference, 2005, pp.1664-1669, 2005.
DOI : 10.1109/WCNC.2005.1424763

N. Sapankevych and R. Sankar, Time Series Prediction Using Support Vector Machines: A Survey, IEEE Computational Intelligence Magazine, vol.4, issue.2, pp.24-38, 2009.
DOI : 10.1109/MCI.2009.932254

A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, issue.3, pp.175-185, 1992.

C. G. Atkeson, A. W. Moore, and S. Schaal, Locally Weighted Learning, Artif. Intell. Rev, vol.11, issue.1-5, pp.11-731006559212014, 1997.
DOI : 10.1007/978-94-017-2053-3_2

A. Aamodt and E. Plaza, Case-based reasoning: Foundational issues, methodological variations, and system approaches, AI Commun, vol.7, issue.1, pp.39-59, 1994.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905