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Averaging of highly-oscillatory transport equations

Philippe Chartier ∗ Nicolas Crouseilles † Mohammed Lemou ‡

November 14, 2016

Abstract

In this paper, we develop a new strategy aimed at obtaining high-order asymp-
totic models for transport equations with highly-oscillatory solutions. The technique
relies upon recent developments averaging theory for ordinary differential equations,
in particular normal form expansions in the vanishing parameter. Noteworthy, the re-
sult we state here also allows for the complete recovery of the exact solution from the
asymptotic model. This is done by solving a companion transport equation that stems
naturally from the change of variables underlying high-order averaging. Eventually,
we apply our technique to the Vlasov equation with external electric and magnetic
fields. Both constant and non-constant magnetic fields are envisaged, and asymptotic
models already documented in the literature and re-derived using our methodology.
In addition, it is shown how to obtain new high-order asymptotic models.

Keywords: averaging, formal series, normal form, transport equation, highly-oscillatory
regime, Vlasov equation, strong magnetic field.

Mathematics Subject Classification (2010): 34C29, 82B40, 35Q83.

1 Introduction

In a large variety of situations, one is confronted to the resolution of a family of transport
equations of the form

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0, f(0, y) = f0(y) ∈ R, t ∈ R, y ∈ Rn, (1.1)

indexed by a small positive parameter ε, whose occurrence in real-life models often lies at
the core of numerous theoretical and numerical difficulties encountered in obtaining a(-n)
(approximate-) solution. The nature of the difficulties (both theoretical and numerical)
triggered by the presence of ε may vary according to the form of the vector field y 7→
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F ε(y) ∈ Rn. In this article, we shall address the highly-oscillatory situation where it can
be split into two parts

F ε(y) =
1

ε
ω(y)G(y) +K(y) (1.2)

where the flow (t, y0) 7→ Φt(y0) associated with the differential equation

ẏ(t) = G(y(t)), y(0) = y0, (1.3)

is assumed to be periodic, regardless of the specific trajectory (i.e. independently of
the initial condition y0 at time t = 0) and where y 7→ ω(y) is a scalar function bounded
from below by a positive constant. Owing to the 1/ε-term in front of the vector field G,
the solution of the transport equation evolves in a highly-oscillatory regime as soon as ε
becomes small, which is specifically the regime under investigation here. Since our ultimate
goal is the design of high-order uniformly accurate numerical methods (i.e. methods whose
computational cost and accuracy are not influenced by the value of ε), the identification
of the asymptotic models is a pre-requisite: this is the task addressed in this work.

Examples of highly-oscillatory equations of the form (1.1) are numerous [2, 3, 4, 5, 14,
15, 16, 17]. It is obviously out of the scope of this introductory paper to treat all of them:
we will rather concentrate on the following model that will constitute hereafter our target
application, namely the Vlasov equation with strong magnetic field

∂tf(t, x, v) + v · ∇xf(t, x, v) +

(
E(x) +

1

ε
v ×B(x)

)
· ∇vf(t, x, v) = 0, (1.4)

where x ∈ R3 and v ∈ R3 denote respectively the spatial and velocity variables, f :
R × R3 × R3 7→ R is the distribution function, i.e. the density of particles at time t,
position x and velocity v, and where E : R3 7→ R3 and B : R3 7→ R3 are respectively the
electric and magnetic fields, assumed to be external at this stage (i.e. not coupled with f
through Maxwell equations for instance).

Our first objective is this paper is to derive formal asymptotic models for equation
(1.1) with F ε satisfying (1.2) and ω ≡ 1. Rather then merely obtain the limit equation
where ε tends to zero, we demand higher-order terms in powers of ε. The methodology
we propose relies on recent results from the theory of averaging for highly-oscillatory
ordinary differential equations [21, 22], and more precisely on normal forms obtained as ε-
expansions. Such series have been derived with the help of B-series in [6, 7, 9] or somehow
more simply in [18, 19, 20] with word-series1. The underlying results we shall lean onto
will be presented in Section 3, but prior to that, we shall show in Section 2 how the
splitting of the vector field F ε into two commuting vector fields naturally leads to two
independent transport equations2. The corresponding first result (for constant ω) will be
stated in Section 4.

1Although the effect of truncating the aforementioned formal series has been fully analysed in subsequent
papers [7, 8], it is out of the scope of this first paper to present a complete error analysis. This will be the
object of a forthcoming paper [10].

2The aim of this section is to introduce the rationale underlying our methodology, i.e. the idea that
decomposing the vector field F ε in (1.1) into two commuting vector fields allows to separate the stiff and
non-stiff parts of the transport equation.
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In Section 5, we will address the much more involved situation of a varying frequency
(ω non-constant in (1.2)), which requires to work in an augmented space. In particular,
the main result of this paper will be stated there. It allows to rewrite the original transport
equation (1.1) as a set of four non-stiff equations for a phase function (S) and a profile
function (h). This procedure is inspired from the recent work [12], although the context
here is different. The two equations for the profile function are the counterpart of the
averaged equation obtained elsewhere in the literature. However, solving the equation for
the phase function S allows to recover exactly the complete solution of (1.1). This part is
up to our knowledge completely new. Since we use series-expansions, it is possible to write
down explicitly and in a systematic way the terms appearing in the four equations for S
and h. In Section 6, we shall eventually envisage our target application (1.4) and show
how to obtain the terms of these developments. Firstly, in Section 6.1, we will consider
the case of a constant magnetic field B(x) ≡ B in (1.4) with a physical space of dimension
two, as it appears to be a simple application of the results of Section 4. Secondly, in
Section 6.2, we will address the more involved situation of a varying magnetic field (B
non-constant in (1.4)), which requires a preliminary treatment of the transport equation,
as exposed in Section 5. At last, we shall treat equation (1.4) in full generality, i.e. in
three dimensions and with a general magnetic field, and compare the equations we obtain
with our methodology to results previously published in the literature.

2 Decomposition of a transport equation

Let us consider the Liouville equation

∂tf(t, y) + F (y) · ∇yf(t, y) = 0,

associated to a split vector field of the form

F = F1 + F2,

and let us make the fundamental assumption that the Lie bracket of F1 and F2 vanishes,
that is to say that

∀y ∈ Rn, [F1, F2](y) := (∂yF1)(y) F2(y)− (∂yF2)(y) F1(y) = 0.

This commutation of vector fields further manifests itself as the commutation of the two
flows3 associated with F1 and F2, or as the commutation of the Lie operators associated
with F1 and F2. More precisely, denoting LF1 and LF2 the operators defined, for any
smooth function g ∈ C∞(Rn;Rm) by

∀y ∈ Rn, LF1(g)(y) = ∂yg(y)F1(y) and ∀y ∈ Rn, LF2(g)(y) = ∂yg(y)F2(y),

we have4

LF1LF2 = LF2LF1 , (2.1)

3These flows are assumed to be defined for all t ∈ R and all y ∈ Rn without further notice.
4Owing to the general well-known formula LF1LF2 − LF2LF1 = L[F1,F2].
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i.e. more explicitly

∀g ∈ C∞(Rn;Rm), LF1

(
LF2(g)

)
= LF2

(
LF1(g)

)
.

The method of characteristics immediately gives for any smooth solution of (1.1)

∀t ∈ R, f(t, ·) = exp (−tLF1+F2)(f0), (2.2)

which, owing to relation (2.1), can also be written as

∀t ∈ R, f(t, ·) = exp (−tLF1) exp (−tLF2)(f0) = exp (−tLF2) exp (−tLF1)(f0). (2.3)

A somehow natural step forward now consists in separating the two times in previous
relation and defining the new function with additional variable τ

f̃(t, τ, ·) = exp (−τLF1) exp (−tLF2)(f0) = exp (−tLF2) exp (−τLF1)(f0). (2.4)

We are now in position to state the following proposition, which shows that the augmented
function f̃ is in fact the unique solution of a system of two independent equations.

Proposition 2.1 Consider the system composed of the following two transport equations

∀(t, τ, y) ∈ R× R× Rn, ∂τ f̃(t, τ, y) + F1(y) · ∇yf̃(t, τ, y) = 0 (2.5)

and

∀(t, τ, y) ∈ R× R× Rn, ∂tf̃(t, τ, y) + F2(y) · ∇yf̃(t, τ, y) = 0, (2.6)

together the with initial condition f̃(0, 0, y) = f0(y). If the condition [F1, F2] = 0 is
satisfied, this system has a unique solution, which furthermore satisfies

∀(t, y) ∈ R× Rn, f̃(t, t, y) = f(t, y).

Proof. We first note that, if a solution f̃ exists, then equations (2.5) and (2.6) can be
solved in any order. Hence, we can obtain the value of f̃(t, τ, y) by first solving (2.5) for
t = 0 from the initial value f̃(0, 0, y) = f0(y) -this furnishes f̃(0, τ, y)- and then by solving
(2.6) for fixed τ from this initial value. Insofar as the solution exists, it is thus unique.
Now, define

f̃(t, τ, ·) = exp (−τLF1) exp (−tLF2)(f0) = exp (−tLF2) exp (−τLF1)(f0).

It is easy to check that it satisfies both (2.5) and (2.6) by considering successively the first
and the second form. The function f̃ defined above is thus the unique solution of system
(2.5-2.6). Finally,

∂t

(
f̃(t, t, y)

)
+ F · ∇yf̃(t, t, y) = ∂tf̃(t, t, y) + ∂τ f̃(t, t, y) + F · ∇yf̃(t, t, y)

= ∂tf̃(t, t, y) + F1 · ∇yf̃(t, t, y) + ∂τ f̃(t, t, y) + F2 · ∇yf̃(t, t, y)

= 0.

The initial condition f̃(0, 0, ·) = f0 and a uniqueness argument then allow to conclude.
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3 Averaging of ordinary differential equations in a nutshell

Since our approach for averaging the transport equation (1.1) consists in averaging first the
characteristics and then rewrite the corresponding Liouville equations, we hereafter recall
the main results upon which we shall lean. In this paper, we content ourselves with formal
expansions, thus neglecting at this stage the occurrence of error terms. This is justified
by the fact that, under appropriate smoothness assumptions, these errors actually become
of size εn for any fixed n, or even exponentially small (i.e. bounded by Ce−C/ε for some
positive constant C). A completely rigorous treatment of these error terms for ordinary
differential equations can be found for instance in [7], and their influence in our situation
will be analysed in a forthcoming paper [10].

3.1 A normal form theorem

Consider the highly-oscillatory differential equation

ẏ = F ε(y) :=
1

ε
G(y) +K(y) (3.1)

i.e. equation (1.2) with ω ≡ 1, where both vector fields G and K are assumed to be
smooth5. As already alluded to in the Introduction section, the fundamental assumption
(H) required to go any further is that

(H) G generates a periodic flow Φτ , regardless of the specific trajectory (i.e. with
a period which remains independent of the initial value). By convention, we will suppose
here that this period is 2π.

Since the Lie bracket of G and K has here no reason to vanish, we can not reproduce
right away the analysis conducted in previous section. It is precisely the aim of averaging
to rewrite F ε as the sum of two commuting fields6. As already emphasized, this is in
general possible only up to small error terms, so that the theorem stated below is to be
understood in a formal sense.

Theorem 3.1 Suppose that the vector field F ε can be split according to equation (3.1)
and that G satisfies assumption (H). Then there exist two vector fields Gε and Kε such
that

(i) F ε = 1
εG

ε +Kε;

(ii) the Lie bracket of Gε and Kε vanishes, i.e. [Gε,Kε] = 0;

(iii) the vector field Gε generates a flow τ 7→ Φε
τ which is 2π-periodic, regardless of the

specific trajectory, i.e.

∀(t, y) ∈ R× Rn, Φε
t+2π(y) = Φε

t (y).
5Either of class Ck or analytic. The precise smoothness assumption determines the type of error bounds,

either polynomial or exponential in ε and is thus not essential here (see [10]).
6At least, this is one way to envisage averaging for ordinary differential equations and this is the point

of view adopted both in [9] and in the recent series of papers by Murua and Sanz-Serna [18, 19, 20].
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This result brings us back to Section 2 and indeed allows to split equation (1.1) into
two equations of the form (2.5-2.6); details will be given in Section 4. We conclude
this subsection with a few additional statements related to the conservation of geometric
properties by stroboscopic averaging.

Theorem 3.2 Suppose that the vector field F ε can be split according to equation (3.1)
and that G satisfies assumption (H). Then the two vector fields Gε and Kε of Theorem
3.1 have the following properties:

(i) if both G and K are divergence-free vector fields, then so are Gε and Kε;

(ii) if both G and K are Hamiltonian vector fields, then so are Gε and Kε.

Remark 3.3 The properties of Theorem 3.2 are intimately linked to the choice of strobo-
scopic averaging (see [9, 11]), which is the only averaging procedure preserving geometric
properties of the initial vector field F ε.

3.2 Expansions in powers of ε of the vector fields Gε and Kε

Since we wish in particular to identify the asymptotic behaviour of (1.1) in the limit when
ε tends to zero as well as higher-order terms in ε, it is essential to consider ε-expansions
of the various functions appearing in Theorem 3.1. Since this was precisely the point of
view adopted in [9, 11], we shall again quote the following result7:

Theorem 3.4 Consider the Fourier series of

Kτ (y) =

(
∂Φτ

∂y
(y)

)−1

(K ◦ Φτ )(y) =
∑
k∈Z

eikτ K̂k(y). (3.2)

The averaged vector field Kε admits the following formal ε-expansion

Kε =

+∞∑
r=1

εr−1K [r] =

+∞∑
r=1

εr−1

r

∑
(i1,...,ir)∈Zr

β̄i1···ir [. . . [K̂i1 , K̂i2 ], K̂i3 ], . . . , K̂ir ] (3.3)

where the coefficients β̄ are universal (problem-independent). Similarly, the vector field
Gε admits the following formal ε-expansion

Gε = ε(F ε −Kε). (3.4)

Remark 3.5 The fact that geometric properties of Gε and Kε are inherited from F ε may
also be seen as a direct consequence of the form of previous expansions, which are linear
combinations of embedded Lie-brackets of the K̂k’s. For instance, if both G and K are
Hamiltonian, then Kτ is of the form

Kτ (y) = J−1∇yHτ (y) with Hτ (y) =
∑
k∈Z

eiτ Ĥk(y)

7Note again that an alternative proof of this result may be found in [18] and [19].
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and all Fourier coefficients K̂k(y) = J−1∇yĤk(y) are also Hamiltonian. Since

∀(k, l) ∈ Z2, [K̂k, K̂l] = J−1∇y{Ĥk, Ĥl}

where {·, ·} denotes the Poisson bracket operation, it is then immediate to see that both
Gε and Kε are Hamiltonian with Hamiltonians given by formulas (3.3) and (3.4) where
Lie brackets are replaced by Poisson brackets and the K̂k’s by the Ĥk’s. Similarly, if
div (G) = div (K) = 0, then div (K̂k) = 0 for all k ∈ Z and a standard computation shows
that

∀(k, l) ∈ Z2, div
(

[K̂k, K̂l]
)

= 0

so that again both Gε and Kε are divergence-free.

In order to be able to derive the expansions of Gε and Kε, it still remains to give the value
of the coefficients β̄ appearing in formula (3.3). This is the purpose of next proposition.

Proposition 3.6 The coefficients β̄ can be computed recursively from the following for-
mulas, which hold for all values of j ∈ Z∗, r, s ∈ N∗ and (l1, . . . , ls) ∈ Zs:

β̄0 = 1, β̄j = 0,
β̄0r+1 = 0, β̄0rj = i

j

(
β̄0r−1j − β̄0r

)
,

β̄jl1···ls = i
j

(
β̄l1···ls − β̄(j+l1)l2···ls

)
, β̄0rjl1···ls = i

j

(
β̄0r−1jl1···ls − β̄0r(j+l1)l2···ls

)
.

For the sake of illustration and later use, we now give the first terms of Kε = K [1] +
εK [2] + ε2K [3] +O(ε3), as stated in [6]:

K [1] = K̂0,

K [2] =
∑
k>0

i

k

(
[K̂k, K̂−k] + [K̂0, K̂k − K̂−k]

)
,

K [3] =
∑
k 6=0

1

k2

(
[[K̂k, K̂0], K̂0] + [[K̂−k, K̂k], K̂k]−

1

2
[[K̂−2k, K̂k], K̂k] + [[K̂0, K̂k], K̂−k]

)
−

∑
06=m6=−l 6=0

1

l(m+ l)
[[K̂0, K̂l], K̂m] +

∑
k<−|l|

1

lk
[[K̂k, K̂l], K̂−l]

−
∑

0>k<m,m+k 6=0

1

km
[[K̂k, K̂−k], K̂m]

−
∑

06=m6=±l 6=0,m>−m−l<l

1

m(m+ l)
[[K̂−m−l, K̂l], K̂m]. (3.5)

Remark 3.7 The following expressions of the first three terms of the averaged equation
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have also been derived in various places and do not use Fourier coefficients:

K [1](y) =
1

2π

∫ 2π

0
Kτ (y)dτ, K [2](y) =

−1

4π

∫ 2π

0

∫ τ

0
[Ks(y),Kτ (y)]dsdτ,

K [3](y) =
1

8π

∫ 2π

0

∫ τ

0

∫ s

0
[[Kr(y),Ks(y)],Kτ (y)]drdsdτ

+
1

24π

∫ 2π

0

∫ τ

0

∫ τ

0
[Kr(y), [Ks(y),Kτ (y)]]drdsdτ.

Further terms can be formally obtained by using a non-linear Magnus expansion [1]. Each
of these is a linear combination of iterated integrals of iterated brackets of Kτ .

As an illustration, we derive below the expressions of Gε and Kε for a simple example.
We thus consider the following vector field

F ε(y) =

(
v

1
εJv + E

)
(3.6)

where x = (x1, x2)T ∈ R2, v = (v1, v2)T ∈ R2, y = (x1, x2, v1, v2)T ∈ R4, E ∈ R2 and

J =

(
0 1
−1 0

)
.

The function F ε may be decomposed into the sum 1
εG+K with

G(y) =

(
0
Jv

)
and K(y) =

(
v
E

)
,

and the flow Φτ associated with G simply reads

Φτ (y) =

(
x

eτJv

)
.

Substituting Φτ into K then leads to

Kτ (y) =

(
eτJv
e−τJE

)
= eiτ K̂1(y) + e−iτ K̂−1(y)

with

K̂1(y) =
1

2

(
v − iJv
E + iJE

)
and K̂−1(y) =

1

2

(
v + iJv
E − iJE

)
,

where we have used the relation eθJ = (cos θ)I + (sin θ)J and have written cos θ = 1
2(eiθ +

e−iθ) and sin θ = 1
2i(e

iθ − e−iθ). Formula (3.3) then gives

K [1] = K̂0 = 0,

K [2] = i[K̂1, K̂−1] = −2=
(

(∂yK̂1)K̂−1

)
=

(
JE
0

)
and all other K [r] for r ≥ 3 vanish, as can be checked by easy calculations.

8



4 Averaging of transport equations with constant frequency

Compiling the arguments of the two previous sections, it is now straightforward to obtain
the following corollary, which establishes in particular the existence of a formal averaged
transport equation for problems of the form (1.1-1.2).

Corollary 4.1 Let F ε = 1
εG

ε + Kε be the normal form splitting of a highly-oscillating
vector field F ε = 1

εG+K satisfying (H). The solution of the transport equation

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0

may be obtained as the diagonal value (i.e. for the value τ = t/ε) of the two-scale function
f̃(t, τ, y), 2π-periodic in τ , defined as the unique solution of the following system of two
equations {

∀(t, τ, y), ∂τ f̃(t, τ, y) +Gε(y) · ∇yf̃(t, τ, y) = 0, (i)

∀(t, τ, y), ∂tf̃(t, τ, y) +Kε(y) · ∇yf̃(t, τ, y) = 0 (ii)

with initial condition f̃(0, 0, ·) = f0. Moreover, the ε-expansions of Gε and Kε are given by
formulas (3.3-3.4) of Theorem 3.4. If in addition G and K are both divergence-free, then
so are Gε and Kε, and similarly, if G and K are both Hamiltonian, then so are Gε and
Kε, with Hamiltonians that can be obtained again from formulas (3.3-3.4) by replacing
Lie brackets by Poisson brackets.

Proof. The result follows immediately from Proposition 2.1 with F1 = 1
εG

ε and F2 = Kε

and from Theorem 3.4.

Remark 4.2 Equation (ii) is usually referred to as the averaged transport equation.

As a straightforward illustration of this corollary, we consider the simplified case of a
set of particles evolving in a constant electric field (independent of time and phase-space
variables) and submitted to a constant magnetic field. The corresponding equation

∂tf + v · ∇xf +

(
1

ε
Jv + E

)
· ∇vf = 0, (4.1)

-where f depends on time t ∈ R, position x ∈ R2 and velocity v ∈ R2- is obviously of the
form (1.1) with y = (x1, x2, v1, v2)T ∈ R4 and F ε given by (3.6). On the one hand, given
the extreme simplicity of the vector field F ε, the solution f(t, x, v) of (4.1) can be directly
written as

f0

(
x− εJ(eτJ − I)v − ε2(eτJE − E) + εtJE, eτJv − εJ(eτJ − I)E

)
(4.2)

for τ = t/ε. On the other hand, using the computations at the end of previous section,
equations (i) and (ii) of Corollary 4.1 for f̃(t, τ, x, v) take the following form

(i) ∂τ f̃ + (εv − ε2JE) · ∇xf̃ + (Jv + εE) · ∇vf̃ = 0, (ii) ∂tf̃ + εJE · ∇xf̃ = 0.

By direct differentiation w.r.t. τ and then t, it can be checked that the function given in
formula (4.2) satisfies both equations (i) and (ii).
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5 High-oscillations with varying frequency

In this section, we again consider the transport equation

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0 (5.1)

where the vector field F ε is now of the form

F ε(y) =
1

ε
ω(y)G(y) +K(y) (5.2)

with G still generating a 2π-periodic flow Φτ , independently of the initial condition. In
this form, Theorem 4.1 does not directly apply, owing to the non-existence of a common
frequency for all trajectories (if ω varies). In order to rewrite (5.1) in a more amenable
form, we thus divide it by ω

1

ω(y)
∂tf(t, y) +

1

ω(y)
F ε(y) · ∇yf(t, y) = 0. (5.3)

Upon denoting Y = (t, y), previous equation may then be rewritten as LF̌ ε(f) = 0, where

LF̌ ε(f) = (∂Y f) F̌ ε (5.4)

is the Lie derivative of f in the direction of the augmented vector field

F̌ ε(Y ) =

(
1

ω(y)
1

ω(y)F
ε(y)

)
=

1

ε

(
0

G(y)

)
+

(
1

ω(y)
1

ω(y)K(y)

)
:=

1

ε
Ǧ(Y ) + Ǩ(Y ). (5.5)

In particular, note that Ǧ still generates a 2π-periodic flow.

5.1 Immersion as the stationary solution of an extended equation

Our first idea is to interpret the function f(t, y) = f(Y ) as the (stationary) solution to
the following augmented transport equation on g(s, Y ):

∂sg(s, Y ) + F̌ ε(Y ) · ∇Y g(s, Y ) = 0, g(0, Y ) = f(Y ) = f(t, y).

This means that
g(s, ·) = exp (−sLF̌ ε) f = f for all s ≥ 0.

Since Ǧ generates a 2π-periodic flow, the averaging Theorem 3.1 ensures that

F̌ ε =
1

ε
Ǧε + Ǩε,

where Ǧε still generates a 2π-periodic flow and [Ǧε, Ǩε] = 0. Proceeding as in Section 2,
we then get two equations for

g̃(s, τ, ·) = exp (−τLǦε) exp (−sLǨε) f

10



of the form

(i) ∂sg̃(s, τ, Y ) + Ǩε(Y ) · ∇Y g̃(s, τ, Y ) = 0 (5.6)

(ii) ∂τ g̃(s, τ, Y ) + Ǧε(Y ) · ∇Y g̃(s, τ, Y ) = 0 (5.7)

which can be solved one after another in any order, since [Ǧε, Ǩε] = 0. Note the usual
relation g̃(s, s/ε, Y ) = g(s, Y ) = f(Y ). However, there is here no known initial condition
at s = τ = 0, since g̃(0, 0, Y ) = g(0, Y ) = f(t, y) is precisely the unknown of the original
problem.

5.2 Eliminating the extra-variable s

Our objective in this subsection is to transform the two equations (5.6-5.7) into new
equations which do not involve the variable s and are provided with a proper initial
condition, namely f0(y). We will then show how to recover the original solution f(t, y)
using only these new equations. To this aim, we will introduce a phase-function (t, τ, y) 7→
S(t, τ, y) in the spirit of [12], which will be defined later on as the solution of a transport
equation, and a profile-function (t, τ, y) 7→ h(t, τ, y) defined by

h(t, τ, y) = g̃(S(t, τ, y), τ, t, y), (5.8)

that will also be shown to satisfy a companion transport equation. Our starting point is
the following set of relations

∂th = (∂sg̃(S, τ, t, y)) ∂tS + ∂tg̃(S, τ, t, y),

∂τh = (∂sg̃(S, τ, t, y)) ∂τS + ∂τ g̃(S, τ, t, y),

∂yh = (∂sg̃(S, τ, t, y)) ∂yS + ∂y g̃(S, τ, t, y),

where we have omitted the obvious arguments of functions h and S and which may be
straightforwardly obtained. Together with equations (5.6) and (5.7), they lead immedi-
ately to

Ǩε
1(y)∂th(t, τ, y) + Ǩε

2(y) · ∇yh(t, τ, y)

= (∂sg̃(S, τ, t, y))
(
Ǩε

1(y)∂tS(t, τ, y) + Ǩε
2(y)∂yS(t, τ, y)− 1

)
,

and

∂τh(t, τ, y) + Ǧε1(y)∂th(t, τ, y) + Ǧε2(y) · ∇yh(t, τ, y)

= (∂sg̃(S(t, τ, y), τ, t, y))
(
Ǧε1(y)∂tS(t, τ, y) + Ǧε2(y)∂yS(t, τ, y) + ∂τS(t, τ, y)

)
,

where the index 1 in Ǩε
1 and Ǧε1 refers to the first components of Ǩε and Ǧε, while the

index 2 in Ǩε
2 and Ǧε2 refers to all remaining components of Ǩε and Ǧε. Now, in order to

eliminate the variable s from the previous two equations, one has to choose S such that

Ǩε
1(y)∂tS(t, τ, y) + Ǩε

2(y) · ∇yS(t, τ, y) = 1,

∂τS(t, τ, y) + Ǧε1(y)∂tS(t, τ, y) + Ǧε2(y) · ∇yS(t, τ, y) = 0,
(5.9)
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and then
Ǩε

1(y)∂th(t, τ, y) + Ǩε
2(y) · ∇yh(t, τ, y) = 0,

∂τh(t, τ, y) + Ǧε1(y)∂th(t, τ, y) + Ǧε2(y) · ∇yh(t, τ, y) = 0,
(5.10)

with initial conditions

S(0, 0, y) = 0, h(0, 0, y) = f0(y). (5.11)

From these functions S and h, one can recover the distribution function f(t, y) as follows:
for any given (t, y), define τ(t, y) as a solution of

τ(t, y) =
S(t, τ(t, y), y)

ε
.

Then f can be obtained from the relation

h(t, τ(t, y), y) = g̃

(
S(t, τ(t, y), y),

S(t, τ(t, y), y)

ε
, t, y

)
,

= g(S(t, τ(t, y), y), t, y)

= f(t, y).

Lemma 5.1 Assume that y 7→ Ǩε
1(y) does not vanish and consider the two vector fields

Ǎε :=
1

Ǩε
1

Ǩε
2 and B̌ε := Ǧε2 −

Ǧε1
Ǩε

1

Ǩε
2 ,

together with the two scalar functions

α̌ε :=
1

Ǩε
1

and β̌ε := − Ǧ
ε
1

Ǩε
1

.

Then the following two relations hold true

LǍβ̌ = LB̌α̌ and LǍLB̌ = LB̌LǍ. (5.12)

Proof. Owing to Theorem 3.4, the two vector fields Ǩε and Ǧε have a vanishing Lie
bracket (with respect to the Y = (t, y) variable). This implies that

∂yǨ
ε
1(y) Ǧε2(y)− ∂yǦε1(y) Ǩε

2(y) = 0 and ∂yǨ
ε
2(y) Ǧε2(y)− ∂yǦε2(y) Ǩε

2(y) = 0. (5.13)

By definition of α̌ε and β̌ε, the first relation may be rewritten as

∇yβ̌ε · Ǎε −∇yα̌ε · B̌ε = 0 (5.14)

which proves the first statement of the lemma. Now, given a smooth vector field L : Rn →
Rn, a scalar function a : Rn → R and δy a vector of Rn, the relation

(∂y(aL)) δy = (∇ya · δy)L+ a(∂yL) δy

12



holds true and may be used to compute the Lie bracket of Ǎε and B̌ε as follows

[Ǎε, B̌ε] =∂y(α̌
εǨε

2)
(
Ǧε2 + β̌εǨε

2

)
− ∂yǦε2 (α̌εǨε

2)− ∂y(β̌εǨε
2) (α̌εǨε

2)

=
(
∇yα̌ε ·

(
Ǧε2 + β̌εǨε

2

))
Ǩε

2 + α̌ε(∂yǨ
ε
2)
(
Ǧε2 + β̌εǨε

2

)
− α̌ε(∂yǦε2) Ǩε

2 − α̌ε
(
∇yβ̌ε · Ǩε

2

)
Ǩε

2 − α̌εβ̌ε(∂yǨε
2) Ǩε

2 .

Using the second half of (5.13), the equality above simplifies to

[Ǎε, B̌ε] =
(
∇yα̌ε · Ǧε2 + β̌ε∇yα̌ε · Ǩε

2 − α̌ε∇yβ̌ε · Ǩε
2

)
Ǩε

2

=
(
∇yα̌ε · B̌ε −∇yβ̌ε · Ǎε

)
Ǩε

2

where the scalar term in factor of Ǩε
2 now vanishes owing to (5.14). This implies the

second statement of the lemma and completes its proof.

Theorem 5.2 Consider the functions S(t, τ, y) and h(t, τ, y) satisfying the following two
separate systems of equations

Ǩε
1(y)∂tS(t, τ, y) + Ǩε

2(y) · ∇yS(t, τ, y) = 1, (5.15)

Ǩε
1(y)∂τS(t, τ, y) +

(
Ǩε

1(y)Ǧε2(y)− Ǧε1(y)Ǩε
2(y)

)
· ∇yS(t, τ, y) = −Ǧε1(y), (5.16)

S(0, 0, y) = 0, (5.17)

and

Ǩε
1(y)∂th(t, τ, y) + Ǩε

2(y) · ∇yh(t, τ, y) = 0, (5.18)

Ǩε
1(y)∂τh(t, τ, y) +

(
Ǩε

1(y)Ǧε2(y)− Ǧε1(y)Ǩε
2(y)

)
· ∇yh(t, τ, y) = 0, (5.19)

h(0, 0, y) = f0(y). (5.20)

If the function y 7→ Ǩε
1(y) does not vanish, then the following statements hold:

(i) system (5.18-5.19-5.20) has a unique solution h, periodic w.r.t. τ ;

(ii) system (5.15-5.16-5.17) has a unique solution S, periodic w.r.t. τ ;

(iii) the formal expansion of the solution f(t, y) of problem (5.1-5.2) satisfies

f(t, y) = h(t, τ(t, y), y),

where the function (t, y) 7→ τ(t, y) ∈ R is implicitly defined (locally) by the relation

ετ(t, y) = S(t, τ(t, y), y).

Proof. A straightforward computation shows that the four equations (5.15), (5.16),
(5.18), (5.19) are equivalent to the four equations in (5.9) and (5.10). Hence, if the separate
systems (5.18-5.19) and (5.15-5.16) have unique solutions, they are clearly periodic w.r.t.
τ . Now, proving the first statement requires to show that equations (5.18) and (5.19) can
be solved in any order, i.e. that LǍε and LB̌ε commute, which is ensured by previous
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lemma. If h is the solution of (5.18-5.19-5.20), then h(·, 0, ·) is in particular the solution
of the Cauchy problem (5.18-5.20) and thus reads

h(t, 0, ·) = exp(−tLǍε)f0.

Equation (5.19), which is a transport equation in variables (τ, y) with fixed parameter t,
can then be uniquely solved. Given the initial data h(t, 0, ·) = exp(−tLǍε)f0, this yields

h(t, τ, ·) = exp(−τLB̌ε) exp(−tLǍε)f0. (5.21)

Hence, if a solution of (5.18-5.19-5.20) exists, it is necessarily of this form and thus unique.
Conversely, one has, according to previous lemma

exp(−tLǍε) exp(−τLB̌ε)f0 = exp(−τLB̌ε) exp(−tLǍε)f0

and by differentiating the left-hand side w.r.t. t and the right-hand side τ , it may be
checked that h given in (5.21) is indeed solution -thus the unique solution- of system
(5.18-5.19-5.20). This proves (i).

Proceeding similarly for system (5.15-5.16-5.17), we first solve (5.15-5.17) for fixed
τ = 0. This yields

S(t, 0, ·) = exp
(
− tLǍε

)
S(0, 0, ·) +

∫ t

0
exp

(
(s− t)LǍε

)
ds α = tϕ

(
− tLǍε

)
α,

where ϕ(z) = ez−1
z is holomorphic on C. The function S so-obtained then serves as initial

condition for the evolution in τ through equation (5.16). This then leads to

S(t, 0, ·) = exp
(
− τLB̌ε

)
tϕ
(
− tLǍε

)
α+ τϕ

(
− τLB̌ε

)
β

= τϕ
(
− τLB̌ε

)
β + tϕ

(
− tLǍε

)
α− t τ ϕ

(
− tLǍε

)
ϕ
(
− τLB̌ε

)
LB̌εα

where we have used the commutation of LǍε and LB̌ε . Solving the equations in reverse
order would have led to the symmetric variant

S(t, 0, ·) = τϕ
(
− τLB̌ε

)
β + tϕ

(
− tLǍε

)
α− t τ ϕ

(
− tLǍε

)
ϕ
(
− τLB̌ε

)
LǍεβ,

which, owing to Lemma 5.1 (LǍεβ = LB̌εα), coincides with the first one. This proves (ii).
It remains to prove (iii). From (5.8) and the definition of h and g̃, we have

∀ (t, τ, y), h(t, τ, y) = g̃ (S(t, τ, y), τ, t, y) and g̃

(
S(t, τ, y),

S(t, τ, y)

ε
, t, y

)
= f(t, y),

so that the value of f(t, y) can be recovered from h and S through the formula

∀ (t, τ, y), f(t, y) = h(t, τ(t, y), y),

provided that τ(t, y) satisfies

ετ(t, y) = S(t, τ(t, y), y).

Given the periodicity of S w.r.t. τ , this equation always has a solution τ(t, y).

Remark 5.3 (truncated averaged models) If one keeps, in the expansions of the
averaged fields Ǎε and B̌ε (defined in Lemma 5.1), only the terms of order less than (or
equal to) n in ε, then the question arises whether the corresponding truncated averaged

14



models8 have a solution in the exact sense, and whether this solution is periodic w.r.t. τ .
Generally speaking, the transport operators associated with the truncated fields Ǎn and B̌n
(i.e. Ǎε = Ǎn + O(εn+1), B̌ε = B̌n + O(εn+1)) do not commute exactly. More precisely,
we only have [Ǎn, B̌n] = O(εn+1). However, one can define an approximate solution by
first solving

∂τh+ B̌n(y) · ∇yh = 0, h(0, 0, y) = f0(y)

for fixed t = 0 (in this way we obtain a solution hn(0, τ, y) defined for all τ), and then
solving

∂th+ Ǎn(y) · ∇yh = 0, h(0, τ, y) = hn(0, τ, y)

in order to get a solution h1
n(t, τ, y) defined for all τ and t. At this stage, it is worth

emphasizing that the function h1
n does not satisfy exactly the first equation for all t (only

for t = 0), since [Ǎn, B̌n] 6= 0. Nevertheless, it does satisfy it up to terms of size εn+1. In
particular, if one solves the two equations in reverse order, the function h2

n obtained does
not coincide with h1

n exactly, but only up to terms of size εn and we have h1
n−h2

n = O(εn+1).
In this sense, the result in previous theorem is at this stage only formal. It will be the
subject of a forthcoming paper [10] to prove error estimates for the defects in (5.9) and
(5.10).

5.3 An illustrative elementary example

Our aim here is to illustrate the result of Section 5 on an elementary example for which
exact solutions can be easily obtained. Consider the following transport equation

∂tf +

(
1

ε
ω(y)Jy + y

)
· ∇yf = 0, f(0, y) = f0(y), (5.22)

where y ∈ R2, and where

ω(y) = 1 + |y|2 = 1 + y2
1 + y2

2 and J =

(
0 1
−1 0

)
.

This equation can be solved as follows: let ϕεt (y) be the flow of the characteristics equation

ẏ =
1

ε
ω(y)Jy + y.

By taking its inner product by y, we have immediately |ϕεt (y)| = exp(t)|y|, so that

ϕεt (y) = exp(t) exp

(
1

ε

(
t+ (e2t − 1)

|y|2

2

)
J

)
y.

As a consequence, the explicit solution of (5.22) reads

f(t, y) = f0

(
exp

(
−t− 1

ε

(
t+ (1− e−2t)

|y|2

2

)
J

)
y

)
. (5.23)

8i.e. the models obtained by removing all the terms of size εp for p ≥ n+ 1.
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Now, we observe that the two fields ω(y)Jy and K(y) = y do not commute, and in order
to transform the problem into a highly-oscillatory problem with y-independent frequency,
one has to divide equation (5.22) by ω and immerse the equation on f into an augmented
one for the unknown g(s, t, y)

∂sg +
1

ω(y)
∂tg +

(
1

ε
Jy +

y

ω(y)

)
· ∇yg = 0, g(0, t, y) = f(t, y). (5.24)

Unlike the fields ω(y)Jy and K, we now observe that the two augmented fields Ǧ(y) =

(0, Jy)T and Ǩ(y) =
(

1
ω(y) ,

y
ω(y)

)T
do commute. This means that equation (5.24) is

already written in a normal form and therefore the averaged fields in this case are simply

Ǧε = (0, Jy)T , Ǩε = (Ǩε
1 , Ǩ

ε
2)T , with Ǩε

1 =
1

ω(y)
, Ǩε

2 =
y

ω(y)
.

We now apply Theorem 5.2 in this particular case. The solution h = h(t, 0, y) to

∂th+ y · ∇yh = 0, h(0, 0, y) = f0(y),

is h(t, 0, y) = f0(e−ty). As a consequence, the solution h = h(t, τ, y) to

∂τh+ Jy · ∇yh = 0, h(t, 0, y) = f0(e−ty),

is
h(t, τ, y) = f0(e−te−τJy). (5.25)

The solution S = S(t, 0, y) to

∂tS + y · ∇yS = ω(y), S(0, 0, y) = 0,

is simply S(t, 0, y) = t+ (1− e−2t) |y|
2

2 , so that the solution S = S(t, τ, y) to

∂τS + Jy · ∇yS = 0, S(t, 0, y) = t+ (1− e−2t)
|y|2

2
,

is constant w.r.t. τ , given that |eτJy|2 = |y|2, i.e.

S(t, τ, y) = t+ (1− e−2t)
|y|2

2
. (5.26)

Theorem 5.2 asserts that f(t, y) = h(t, τ(t, y), y) where τ(t, y) is given by ετ(t, y) =

t+ (1− e−2t) |y|
2

2 , an assertion which can be easily checked on our explicit example.

6 Application to Vlasov equations with a strong magnetic
field

In this section, we consider the case of particles submitted to a strong magnetic field and
evolving in an electric field E(x) depending on the position x only. We recall hereinafter
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the corresponding equation (1.4) on the distribution function f = f(t, x, v), t ≥ 0, x ∈ R3,
v ∈ R3:

∂tf + v · ∇xf +

(
E(x) + v × B(x)

ε

)
· ∇vf = 0, f(0, x, v) = f0(x, v), (6.1)

which is closely related to the illustrative example of Section 4, though with the additional
difficulty that E and B may vary. We further assume here that E derives from a potential
U , i.e. that E(x) = −∇xU(x).

6.1 Constant magnetic field

Over a first phase, we assume that the magnetic field is constant. This means that, up to
constant rotation, we have B(x) = (0, 0, b(x))T and b(x) ≡ b. Upon rescaling the time
t→ t/b in f , i.e. considering the equation for f(t/b, x, v) instead of f(t, x, v) we may even
assume that b = 1. We further assume in this first phase that the potential U depends
only on the orthogonal direction (to B) of x, that is on the first two components (x1, x2)
of x. This means that the electric field E(x) is orthogonal to B and depends only on
(x1, x2). Assume finally that the initial data f0 only depends on (x1, x2) and (v1, v2), a
property which is therefore propagated by the flow (6.1). All these assumptions allow us
to restrict ourselves to a 2D×2D setting and to rewrite (6.1) in the form (1.1) with n = 4,
y = (x, v) ∈ R2 × R2 and

F ε(y) =

(
v

1
εJv + E(x)

)
=

1

ε
G+K with G(y) =

(
0
Jv

)
and K(y) =

(
v

E(x)

)
.

We now repeat the steps followed for the example of Section 4, starting first with the flow
Φτ (associated with G)

Φτ (y) =

(
x

eτJv

)
.

The time-dependent vector field Kτ then writes

Kτ (y) =

(
eτJv

e−τJE(x)

)
= eiτ K̂1(y) + e−iτ K̂−1(y)

with

K̂1(y) =
1

2

(
v − iJv

E(x) + iJE(x)

)
and K̂−1(y) =

1

2

(
v + iJv

E(x)− iJE(x)

)
.

Formula (3.3) then gives

K [1] = K̂0 = 0,

K [2] = i[K̂1, K̂−1] = −2=
(

(∂yK̂1)K̂−1

)
=

(
JE

1
2(∆U)Jv

)
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where we used computed successively

∂K̂1

∂y
=

1

2

(
0 (I − iJ)

−(I + iJ)∇2
xU 0

)
and9

∂K̂1

∂y
K̂−1 =

1

4

(
(I − iJ)2E

−(I + iJ)∇2
xU(I + iJ)v

)
=

1

4

(
2(I − iJ)E

−
(
∇2
xU − J∇2

xUJ + i(J∇2
xU +∇2

xUJ)
)
v

)
=

1

4

(
2(I − iJ)E

−
(
∇2
xU + det(∇2

xU)I + i∆UJ
)
v

)
.

At second order in ε, equation (i) of Corollary 4.1 for f̃(t, τ, x, v) thus has the following
form

∂τ f̃ + ε(v − εJE) · ∇xf̃ + ((1− ε2∆U)Jv + εE) · ∇vf̃ = 0

while equation (ii) is simply

∂tf̃ + εJE · ∇xf̃ +
ε

2
(∆U)Jv · ∇vf̃ = 0.

This transport equation coincides, up to a rescaling in time, with the asymptotic model
derived in [15]. We emphasize that, according to Remark 5.3, these two equations have
to be understood in the approximate sense, which means that they cannot be satisfied
exactly in general, but can only be solved approximately allowing errors of order ε2.

6.2 Magnetic field with varying intensity and constant direction

Over this second phase, we still work in a 2D×2D setting and keep the same notations as
in the previous section. However, we address here the case of a magnetic field with varying
intensity b(x) and constant direction B(x) = (0, 0, b(x))T . Note that due to divergence
free property of B(x), the function b depends only on (x1, x2). In order to handle this
case of varying intensity b(x), one has to proceed as in Section 5. We first immerse the
problem into an augmented one by adding a new parametrization variable s, then we derive
averaging models at different orders for this augmented problem, and finally eliminate the
extra-variable s from the averaged models and show how the original distribution function

9Note that if S is a 2× 2 symmetric matrix then

JS + SJ =

(
0 1
−1 0

)(
α γ
γ β

)
+

(
α γ
γ β

)(
0 1
−1 0

)
= (α+ β)J

so that J∇2U +∇2UJ = (∆U)J and

JSJ =

(
0 1
−1 0

)(
α γ
γ β

)(
0 1
−1 0

)
= − det(S)I.
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is recovered. In order to do so, we assume that b(x) should not vanish for any x in
R2 and we will make this assumption for the remaining of this section. The augmented
distribution function g(s, t, x, v) satisfies

∂sg +
1

b(x)
∂tg +

1

b(x)
v · ∇xg +

(
1

ε
Jv − 1

b(x)
∇xU(x)

)
· ∇vg = 0. (6.2)

The original distribution function f(t, x, v) is then viewed as a stationary solution of this
evolution equation in s. Denoting Y = (t, x1, x2, v1, v2) ∈ R5 the now extended phase-
space variable, we equivalently write (6.2) as follows

∂sg(s, Y ) + F̌ ε(Y ) · ∇Y g(s, Y ) = 0

where

F̌ ε(Y ) =


1
b(x)
1
b(x)v

1
εJv −

1
b(x)∇xU(x)


is the extended vector field. We may now resume the derivation of the equations (i) and
(ii) of Theorem 4.1, by first splitting F̌ ε into F̌ ε = 1

ε Ǧ+ Ǩ with

Ǧ(Y ) =

 0
0
Jv

 and Ǩ(Y ) =
1

b(x)

 1
v

−∇xU(x)

 .

It is clear that Ǧ now generates a 2π-periodic flow

Φ̌τ (Y ) = Φ̌τ

 t
x
v

 =

 t
x

eτJv


whose period is independent of the trajectory. The function Ǩτ becomes

Ǩτ (Y ) =
1

b(x)

 1
eτJv

e−τJE(x)


and the corresponding Fourier modes are all vanishing except the modes 1, −1 and 0 (the
additional one w.r.t. the case of a constant field):

K̂0(Y ) =

 1
b(x)

0
0

, K̂1(Y ) =
1

2b(x)

 0
(I − iJ)v

(I + iJ)E(x)

, K̂−1(Y ) =
1

2b(x)

 0
(I + iJ)v

(I − iJ)E(x)

.
According to Theorem 4.1, we thus have

K [1](Y ) = K̂0(Y )
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and

K [2] = i
(

[K̂1, K̂−1] + [K̂0, K̂1 − K̂−1]
)

= −2=([K̂0, K̂1])− 2=
(

(∂Y K̂1)K̂−1

)
.

Omitting the argument x in E, U and b, and denoting simply ∇ for ∇x, we have

∂K̂0

∂Y
=
−1

b2

 0 ∇T b 0
0 0 0
0 0 0

 ,

and

∂K̂1

∂Y
=

1

2b2

 0 0 0
0 −(I − iJ)v∇T b b(I − iJ)
0 −b(I + iJ)∇2U + (I + iJ)∇U ∇T b 0


so that

(∂Y K̂1)K̂−1 =
1

4b3

 0 0 0
0 −(I − iJ)v∇T b b(I − iJ)
0 −b(I + iJ)∇2U + (I + iJ)∇U ∇T b 0

 0
(I + iJ)v
(I − iJ)E


=

1

4b3

 0
−(I − iJ)v∇T b (I + iJ)v + b(I − iJ)2E

−b(I + iJ)∇2U (I + iJ)v + (I + iJ)∇U ∇T b (I + iJ)v


and finally

−2=
(

(∂Y K̂1)K̂−1

)
=

1

2b3

 0
(∇b · Jv)v − (∇b · v)Jv + 2bJE

−ε(∇b · v)J∇U − ε(∇b · Jv)∇U + b(∆U)Jv

 .

Besides, we have

(∂Y K̂0)K̂1 =
−1

2b3

 0 ∇T b 0
0 0 0
0 0 0

 0
(I − iJ)v
(I + iJ)E


=
−1

2b3

 ∇b · v − i∇b · Jv0
0


and

(∂Y K̂1)K̂0 =
1

2b3

 0 0 0
0 −(I − iJ)v∇T b b(I − iJ)
0 −b(I + iJ)∇2U + (I + iJ)∇U ∇T b 0

 1
0
0

 = 0

so that

−2=([K̂0, K̂1]) =
−1

b3

 ∇b · Jv0
0

 .
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Finally, at first order in ε, we have

Ǩε = K [1] + εK [2] =
1

b

 1− ε ∇b·Jv
b2

−ε (∇b·v)
2b2

Jv + ε (∇b·Jv)
2b2

v − ε 1
bJ∇U

− ε(∇b·v)
2b2

J∇U − ε(∇b·Jv)
2b2

∇U + ε∆U
2b Jv

 =

(
Kε

1

Kε
2

)
,

and

Ǧε = ε(F̌ ε − Ǩε) =
1

b

 0
εv

bJv − ε∇U

 .

Therefore the transport equations on h are at first order in ε:

∂th+
ε

2b

(
∇b · Jv

b
v − ∇b · v

b
Jv − 2J∇U

)
· ∇xh

− ε

2b

(
∇b · v
b

J∇U +
∇b · Jv

b
∇U − (∆U)Jv

)
· ∇vh = 0, (6.3)

and
∂τh+

ε

b
v · ∇xh+

(
Jv − ε

b
∇U

)
· ∇vh = 0, (6.4)

with the initial condition h(0, 0, y) = f0(y). Similarly the transport equations on S are

∂tS +
ε

2b

(
∇b · Jv

b
v − ∇b · v

b
Jv − 2J∇U

)
· ∇xS

− ε

2b

(
∇b · v
b

J∇U +
∇b · Jv

b
∇U − (∆U)Jv

)
· ∇vS = b(x)

(
1 + ε

∇b · Jv
b2

)
, (6.5)

and
∂τS +

ε

b
v · ∇xS +

(
Jv − ε

b
∇U

)
· ∇vS = 0, (6.6)

with the initial condition S(0, 0, y) = 0. Again, we wish to put the stress on the fact that
these two truncated models in h and S should be understood in the sense of Remark 5.3.

Now we make some important comments on these transport equations. The transport
equation (6.3) coincides with the gyro-kinetic model that has been derived in [15] in
the particular case of constant b. It also contains all the terms in the models recently
derived in [5] in the case of varying b = b(x) when restricted to the 2D × 2D geometry.
However, in addition to the fact that our averaged models keep all the variables (x, v), our
approach provides more information through the phase S and the dependence in τ . These
informations are necessary to correctly reconstruct the full original distribution function
f (and not only the averaged model) at first order in ε. This reconstruction may be
performed through the relation f(t, x, v) = h(t, τ(t, x, v), x, v) +O(ε2) where τ(t, x, v) is a
solution to ετ = S(t, τ, x, v). Up to our knowledge, no such construction can be found in
the literature.
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6.3 Magnetic field in 3D with varying intensity and varying direction

We now consider the transport kinetic equation in its general form (1.4) and in a 3D×3D
setting. This means in particular that now we allow variations of B in both amplitude and
direction. Our aim in this part is to extend our previous approach to this more general
case.

We first immerse the model (1.4) into an augmented problem in the unknown g(s, t, x, v),
as follows

∂sg +
1

|B(x)|
∂tg +

v

|B(x)|
· ∇xg +

(
E(x)

|B(x)|
+

1

ε
v × B(x)

|B(x)|

)
· ∇vg = 0 (6.7)

with the initial condition g(0, t, x, v) = f(t, x, v). The main interest of this form is that

the oscillatory part in the variable s is now driven by the vector field v × B(x)
|B(x)| , which,

as we shall see, generates a periodic flow with a constant period 2π. More precisely, the
trajectories

ẋ(s) = 0, v̇(s) = v(s)× B(x(s))

|B(x(s))|
, (x(0), v(0)) = (x0, v0) ∈ R3 × R3,

are all periodic with the same period 2π independently of (x0, v0).
In particular the period does not depend on the trajectory although the unit vector

B(x)
|B(x)| depends on this trajectory. Indeed let e0 be a unit vector and let (e1, e2, e0) be
an orthonormal basis such that e0 × e1 = e2 and e1 × e2 = e0. The matrix representing
the skew-symmetric linear map Je0 : v 7→ v × e0 in the basis (e1, e2, e0), is simply J =(
J 0
0 0

)
. Since exp(tJ ) is 2π-periodic, the flow exp(tJe0) is 2π-periodic. We now apply

our methodology to model (6.7). Here the vector field F̌ ε = 1
ε Ǧ+ Ǩ is given by

Ǩ(t, x, v) =
1

|B(x)|

 1
v

E(x)

 , Ǧ(t, x, v) =

 0
0

v × B(x)
|B(x)|

 .

We introduce the following notations

e(x) =
B(x)

|B(x)|
, Jev = v × e, Pev = (e · v)e, ∀e ∈ S2, v ∈ R3, x ∈ R3. (6.8)

Using Theorem 3.4, the vector field Kτ can be easily computed to get

Φτ (t, x, v) =

 t
x

exp
(
τJe(x)

)
v

 .

The following elementary identities

J 2
e = −I + Pe, JePe = PeJe = 0
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imply that

Φτ (t, x, v) =

 t
x

(cos τ)v + (1− cos τ)Pe(x)v + (sin τ)Je(x)v


=

 t
x

(cos τ)v + (1− cos τ)(e(x) · v)e(x) + (sin τ)v × e(x)

 . (6.9)

We then deduce the expression of the Jacobian matrix ∂t,x,vΦτ = (∂tΦτ , ∂xΦτ , ∂vΦτ ):

∂t,x,vΦτ =

 1 0 0
0 I 0
0 Rτ Qτ

 ,

where
Rτ = (1− cos τ)∂x

(
Pe(x)v

)
+ (sin τ)∂x

(
Je(x)v

)
= α0 + αeiτ + αe−iτ ,

Qτ = (cos τ)I + (1− cos τ)Pe(x) + (sin τ)Je(x)

= a0 + aeiτ + ae−iτ ,

and
a0 = Pe(x), α0 = ∂x

(
Pe(x)v

)
,

2a = I − Pe(x) − iJe(x),

2α = −∂x
(
Pe(x)v + iJe(x)v

)
.

Note that the matrix Rτ takes care with the so-called curvature terms which are the terms
coming from the space variation of the direction e(x) of the magnetic field. In order to
compute the inverse of the matrix ∂t,x,vΦτ , we observe that

(∂t,x,vΦτ )−1 =

 1 0 0
0 I 0
0 −Q−1

τ Rτ Q−1
τ

 ,

which means that we only need to compute Q−1
τ . Using again the identity J 2

e = −I +Pe,
one may check

Q−1
τ = (cos τ)I + (1− cos τ)Pe(x) − (sin τ)Je(x),

= a0 + aeiτ + ae−iτ = Q−τ .

Now we also have

Ǩ ◦ Φτ (t, x, v) =
1

|B(x)|

 1
Qτv
E(x)

 ,

and therefore

Ǩτ (t, x, v) =
1

|B(x)|

 1
Qτv

−Q−τRτQτv +Q−τE(x)

 .
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One can easily see that the Fourier expansion of Ǩτ (in the periodic variable τ) only
contains modes k ∈ Z with |k| ≤ 3. Note that we can recover the previous case (in which
B(x) had a constant direction and (x, v) ∈ R2 × R2) by taking Pe(x)v = 0, Je(x) ≡ J =(
J 0
0 0

)
and α = 0, which means that Rτ = 0 and Qτ = eτJ .

Although all the Fourier coefficients of Ǩτ can be derived from this expression, we just
give for simplicity the 0th mode:

K̂0(x, v) =
1

|B(x)|

 1
Pe(x)v = (e(x) · v)e(x)

(K̂0)3

 = K [1],

with

(K̂0)3(x, v) = a0E(x)− (a0α0a0 + a0αa+ a0αa+ aα0a+ aαa0 + aα0a+ aαa0)v

= Pe(x)E(x)−
[
4Pe(x)∂x

(
Pe(x)v

)
Pe(x) +

1

2
Pe(x)∂x

(
Je(x)v

)
Je(x)

−1

2
Je(x)∂x

(
Pe(x)v

)
Je(x) −

1

2
Je(x)∂x

(
Je(x)v

)
Pe(x)

−Pe(x)∂x
(
Pe(x)v

)
− ∂x

(
Pe(x)v

)
Pe(x) +

1

2
∂x
(
Pe(x)v

)]
v.

We then deduce the vector field Gε at the 0th order in ε:

G[1] = ε(F̌ ε −K [1]) +O(ε) = 1
|B(x)|

 0
ε
(
v − Pe(x)v

)
|B(x)|Le(x)v + ε

(
E(x)− (K̂0)3(x, v)

)
+O(ε)

=

 0
0

Le(x)v

+O(ε).

The averaged model at the 0th order in ε can now be written in terms of h(t, τ, x, v)
and S(t, τ, x, v). We have

∂th+
(
B(x)
|B(x)| · v

)
B(x)
|B(x)| · ∇xh+ (K̂0)3(x, v) · ∇vh = 0,

∂τh+
(
v × B(x)

|B(x)|

)
· ∇vh = 0,

and
∂tS +

(
B(x)
|B(x)| · v

)
B(x)
|B(x)| · ∇xS + (K̂0)3(x, v) · ∇vS = |B(x)|,

∂τS +
(
v × B(x)

|B(x)|

)
· ∇vS = 0,

with the initial conditions: h(0, 0, x, v) = f0(x, v) and S(0, 0, x, v) = 0. Note that in the
particular case where B(x) has a constant direction B(x) = b(x)e0 = (0, 0, b(x))T , we get

∂th+ v‖∂x‖h+ E‖∂v‖h = 0,

∂τh+ Jv⊥ · ∂v⊥h = 0.
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and
∂tS + v‖∂x‖S + E‖∂v‖S = b(x),

∂τS + Jv⊥ · ∂v⊥S = 0,

where we used the standard notations v‖ = v · e0, E‖ = E · e0 and

v = (v1, v2, v‖) = (v⊥, v‖), E = (E1, E2, E‖) = (E⊥, E‖), ∂v⊥h = (∂v1h, ∂v2h),

and the same notations for the space variable x. Observe that the exact solution of the
two equations for S (for the 0th order in ε) is simply S(t, τ, x, v) = b(x)t.

The averaged equations at the first order in ε can also be derived in the case of a
magnetic field B(x) with constant direction B(x) = (0, 0, b(x))T , with b(x) > 0. In this
case we have Rτ = 0, e(x) is the constant unit vector e0, |B(x)| = b(x), and therefore

Ǩτ (t, x, v) =
1

b(x)

 1
Qτv

Q−τE(x)

 .

The non-zero Fourier modes in τ of this quantity Ǩτ are

K̂0 =
1

b

 1
a0v
a0E

 , K̂1 =
1

b

 0
av
aE

 , K̂−1 =
1

b

 0
av
aE

 .

The computation of Kε at first order in ε can then be derived from Theorem 3.4 as follows.
We know from Theorem 3.4 that Ǩε = K [1] + εK [2] with

K [1] = K̂0, K [2] = −2=
(

(∂Y K̂1)K̂−1

)
− 2=

(
[K̂0, K̂1]

)
.

Since

∂Y K̂1 =

 0 0 0

0 −a
(
v ⊗ ∇b

b2

)
a
b

0 a∂x
(
E
b

)
0

 , ∂Y K̂0 =

 0 − (∇b)T
b2

0

0 −a0

(
v ⊗ ∇b

b2

)
a0
b

0 a0∂x
(
E
b

)
0


we get

2=
(

(∂Y K̂1)K̂−1

)
=

1

2b

 0

−(I − P)
(
v ⊗ ∇b

b2

)
J v + J

(
v ⊗ ∇b

b2

)
(I − P)v − 2

bJE
(I − P)∂x

(
E
b

)
J v + J ∂x

(
E
b

)
(I − P)v


where we have denoted P = Pe0 and J = Je0 . We also have

2=
(

[K̂0, K̂1]
)

=
1

b

 J v · ∇b
b2

P
(
v ⊗ ∇b

b2

)
J v − J

(
v ⊗ ∇b

b2

)
Pv

−P∂x
(
E
b

)
J v − J ∂x

(
E
b

)
Pv

 ,

therefore

K [2] =
1

b

 −J v · ∇b
b2

1
2

(
J v · ∇b

b2

)
(I − 3P)v − 1

2

(
(I − 3P)v · ∇b

b2

)
J v + 1

bJE
−1

2(I − 3P)∂x
(
E
b

)
J v − 1

2J ∂x
(
E
b

)
(I − 3P)v

 ,
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and

Ǩε = K [1] + εK [2] +O(ε2)

=
1

b

 1− εJ v · ∇b
b2

v‖e0 + ε
2

[(
J v · ∇b

b2

)
(I − 3P)v −

(
(I − 3P)v · ∇b

b2

)
J v
]

+ ε
bJE

E‖e0 − ε
2

[
(I − 3P)∂x

(
E
b

)
J v + J ∂x

(
E
b

)
(I − 3P)v

]
+O(ε2).

We finally deduce the field Gε at first order in ε

Ǧε = ε(F̌ ε −K [1] − εK [2]) +O(ε2) =

 0
0
J v

+
ε

b

 0
v⊥
E⊥

+O(ε2).

Therefore, the evolution in time t of h at the first order in ε is driven by the following
equation (with the above described notations)

[
1− εJv⊥ ·

∂x⊥b

b2

]
∂th+ v‖

[
1− εJv⊥ ·

∂x⊥b

b2

]
∂x‖h+

[
E‖ + ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖h

− ε

2b

[
|v⊥|2

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥h

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥h = 0,

which simplifies into

∂th+ v‖∂x‖h+

[
E‖ + εE‖Jv⊥ ·

∂x⊥b

b2
+ ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖h

− ε

2b

[
|v⊥|2

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥h

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥h = 0.

(6.10)
Note that we have used the identity ∇x · B = 0 which implies that b(x) = b(x⊥). This
provides an asymptotic model which is identical to the one recently derived in [5] or,
up to a rescaling in time, to the one derived in [13]. However our approach provides
more informations since this equation still contains all the original variables (x, v) of the
distribution function and has to be coupled with an equation describing its dependence
on a periodic variable τ which has to fit with a suitable phase function S. As we shall
see, this equation in τ will provide a suitable initial data for equation (6.10). The second
equation on h writes

∂τh+ Jv⊥ · ∂v⊥h+
ε

b
v⊥ · ∂x⊥h+ ε

E⊥
b
· ∂v⊥h = 0. (6.11)

The system of the two equations (6.10-6.11) is subjected to the initial data h(0, 0, x, v) =
f0(x, v).
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Once again, we recall that system (6.10-6.11) with initial condition h(0, 0, x, v) =
f0(x, v) is only valid up to ε2 terms, and solutions to this system have to be understood
in the sense of Remark 5.3.

Similarly the equations on S are

∂tS + v‖∂x‖S +

[
E‖ + εE‖Jv⊥ ·

∂x⊥b

b2
+ ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖S

− ε

2b

[
|v⊥|2

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥S

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥S

= b+ εJv⊥ ·
∂x⊥b

b
,

(6.12)
and

∂τS + Jv⊥ · ∂v⊥S +
ε

b
v⊥ · ∂x⊥S + ε

E⊥
b
· ∂v⊥S = 0, (6.13)

with the initial data S(0, 0, x, v) = 0.
We now observe that S(t, τ, x, v) = b(x)t + O(ε), and therefore it is more convenient

to write these equations in terms of

S̃(t, τ, x, v) =
S(t, τ, x, v)− b(x)t

ε

and get

∂tS̃ + v‖∂x‖S̃ +

[
E‖ + εE‖Jv⊥ ·

∂x⊥b

b2
+ ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖S̃

− ε

2b

[
|v⊥|2

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥S̃

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥S̃

= Jv⊥ ·
∂x⊥b

b
,

and

∂τ S̃ + Jv⊥ · ∂v⊥S̃ + ε
t

b
v⊥ · ∂x⊥b+

ε

b
v⊥ · ∂x⊥S̃ + ε

E⊥
b
· ∂v⊥S̃ = 0,

with the initial data S̃(0, 0, x, v) = 0. We then recover the solution f by the relation

f(t, x, v) = h(t, τ(t, x, v), x, v),

where (t, x, v) 7→ τ(t, x, v) ∈ R is implicitly defined (locally) from S̃ by the equation

τ(t, x, v) =
b(x)t

ε
+ S̃(t, τ(t, x, v), x, v).
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