
HAL Id: hal-01396985
https://inria.hal.science/hal-01396985

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Storage-Free Memory Dependency Prediction
Arthur Perais, André Seznec

To cite this version:
Arthur Perais, André Seznec. Storage-Free Memory Dependency Prediction. IEEE Computer Archi-
tecture Letters, 2016, pp.1 - 4. �10.1109/LCA.2016.2628379�. �hal-01396985�

https://inria.hal.science/hal-01396985
https://hal.archives-ouvertes.fr

IEEE COMPUTER ARCHITECTURE LETTERS, VOL XX, NO. XX, X 2016

Storage-Free Memory Dependency Prediction
Arthur Perais and André Seznec

INRIA/IRISA
{arthur.perais,andre.seznec}@inria.fr

Abstract—Memory Dependency Prediction (MDP) is paramount to good out-of-order performance, but decidedly not trivial as a all
instances of a given static load may not necessarily depend on all instances of a given static store. As a result, for a given load, MDP
should predict the exact store instruction the load depends on, and not only whether it depends on an inflight store or not, i.e., ideally,
prediction should not be binary. However, we first argue that given the high degree of sophistication of modern branch predictors, the fact
that a given dynamic load depends on an inflight store can be captured using the binary prediction capabilities of the branch predictor,
providing coarse MDP at zero storage overhead. Second, by leveraging hysteresis counters, we show that the precise producer store
can in fact be identified. This embodiment of MDP yields performance levels that are on par with state-of-the-art, and requires less than
70 additional bits of storage over a baseline without MDP at all.

Index Terms—Memory dependency prediction, branch prediction space-efficiency

F

1 INTRODUCTION & MOTIVATION

Out-of-order microprocessors can be found in many
devices, from smartphones to supercomputers. As a result,
their behavior is reasonably understood. Out-of-order pro-
cessors execute instructions as soon as their data dependen-
cies are satisfied, irrespective of program order. Moreover,
given the usual presence of several independent depen-
dency chains within sequential programs, OoO processors
are generally able to execute several instructions per cycle
whereas in-order processor would stall due to the inability
to ”lookahead” the instruction stream.

It follows that OoO processors should implement a
mechanism to determine if a given instruction has all its
data dependencies satisfied. Unfortunately, while register
dependencies can be determined easily as they are encoded
in the instruction word, memory dependencies cannot be
determined precisely until the addresses of inflight memory
instructions are resolved. Without support, this can become
a major impediment to performance. For instance, a first
naive solution is to forbid load from executing until all
previous stores have computed their address, at the cost
of lowering Instruction Level Parallelism (ILP). A second
naive solution is to always allow loads to execute as soon as
their register dependencies become satisfied, at the cost of
requiring recovery when a load indeed executed before an
older store to the same address.

To tackle this limitation, Memory Dependency Predic-
tion (MDP) was proposed [5]. Ideally, the role of MDP is to
determine, for a given load, which older store will write to
the loaded address so the load can be marked dependent on
the store and wait for it to execute. One of the first hardware
implementation of MDP can be found in the Alpha 21264 [4].
It categorized loads as either ”can issue as soon as register
dependencies are satisfied” or ”must wait for all older stores
to compute their address”. More refined schemes were pro-

Manuscript submitted: 04-Oct-2016. Manuscript accepted: 25-Oct-2016. Fi-
nal manuscript received: 31-Oct-2016

posed by Chrysos and Emer [2] and Subramaniam and Loh
[13]. However, all these contributions introduce hardware
structures to perform speculation.

In parallel to MDP propositions, branch predictors have
become more and more sophisticated, e.g., TAGE and per-
ceptron [3], [9]. Branch predictors are also critical to the
performance of modern out-of-order processors. Their ab-
sence would force the processor to stall on each branch,
waiting for it to be resolved without being able to fetch
more instructions from memory. Contrarily to state-of-the-
art memory dependency predictors, branch predictors are
binary predictors, i.e., they only predict whether a branch
will be taken or not taken. Nonetheless, binary predic-
tion is sufficient to predict whether a dynamic load has a
memory dependency or not, which is already a valuable
information. Moreover, because they leverage past history
(e.g., global/local branch history) to guide their predictions,
modern branch predictors would be able to differentiate
instances of a given static instruction that have memory
dependencies from those that do not.

Consequently, we advocate for a unified predictor to
reduce the overall storage cost of speculation in out-of-
order processors. In this paper, we depict the modifications
required in the branch predictor to support such unification,
as well as two simple mechanisms to link loads and stores if
they have been predicted as having a memory dependency
by the unified predictor.

2 RELATED WORK

MDP to improve scheduling was first proposed by
Moshovos [5] and refined in [2], [12], [13]. Other contri-
butions focused on speculatively bypassing the source of a
store to the destination of a corresponding load to increase
performance [6], [7], [11], [14].

Figure 1 shows the performance of different MDP
schemes implemented in an aggressive out-of-order proces-

IEEE COMPUTER ARCHITECTURE LETTERS, VOL XX, NO. XX, X 2016

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

IP
C

re
la

ti
ve

 t
o

 b
lin

d
 s

p
ec

u
la

ti
o

n
All loads wait Alpha 21264-like Store Sets

0.21

Fig. 1. The impact of memory dependency prediction: IPC relative
to blind speculation (loads never wait on older stores to execute) for
SPEC2006CPU benchmarks sensitive to MDP.

sor (later detailed in Table 1) relative to blind speculation
(i.e., loads never wait for older stores to execute). It is
quite clear that having all loads wait on all older stores
is extremely inefficient as it greatly limits the out-of-order
capabilities of the processor. A simple PC-indexed scheme
resembling the Alpha 21264’s [4] (a bitvector informing if
a given load has to wait for all older stores to execute
before issuing or not) is quite efficient, achieving noticeable
(> 10%) speedups over blind speculation in benchmarks
featuring many memory ordering violations, but hinders
performance in hmmer. Finally Store Sets [2] is clearly the
best performer as it is able to precisely link dynamic loads
with dynamic stores. However, Store Sets is a two level
scheme that requires stores to explicitly invalidate them-
selves in the structure when they issue. In parallel, memory
instructions access the structure at Dispatch. Thus, in high-
end processors able to compute several store addresses
and dispatch several instructions per cycle, pressure on the
predictor may be very high. Store Sets also requires more
storage than the 21264-like predictor: 3.75KB vs. 1KB in our
study, assuming 10-bit sequence numbers are stored in the
LFST of Store Sets.

3 A UNIFIED BRANCH AND MEMORY DEPEN-
DENCY PREDICTOR

3.1 The TAGE Branch Predictor
Although recent iterations feature many subcomponents
(loop predictor, local component), state-of-the-art branch
predictors are built on top of TAGE. As a result, to keep
complexity reasonable when discussing our proposition, we
only consider a basic TAGE branch predictor (i.e., without
extensions) [9].

TAGE is a global history predictor featuring several
partially tagged tables that are backed by a direct-mapped
bimodal predictor. The N partially tagged tables are
accessed using N hashes of the branch PC, the global
branch history and the global path history (LSB of branch
targets). The crux of the TAGE algorithm is that the different
lengths of the global branch history used in each hash form
a geometric series. Thanks to the geometric series of global
histories, TAGE is able to capture correlation between very
close as well as very distant branches, while dedicating
most of the storage to short histories, where most of the
correlation is found. A 1+3 TAGE predictor is depicted in

PC PC PC PCh[0:L1] h[0:L2] h[0:L3]

1

1

1 1 1

11111

1

1

Prediction

Tagless Base
Predictor

Fig. 2. 1+3 TAGE predictor synopsis, from [9]

Figure 2.

Prediction All tables are accessed in parallel, and the
table using the longest global history that matches provides
the prediction. If there is no match, the bimodal base pre-
dictor provides the branch prediction. In particular, entries
of partially tagged components feature a 3-bit saturating
counter representing the prediction, a useful bit used by the
replacement policy, and a partial tag. Bimodal entries only
feature a 2-bit saturating counter.

TAGE introduces the notion of provider and alternate
prediction. The provider is the regular prediction, while the
alternate is the prediction that would have been used if
the provider component has not matched. In some cases,
accuracy is higher if the alternate prediction is used instead
of the provider.

Update TAGE may update several entries for a single
prediction. If the prediction is correct, both provider and
alternate entries may be updated. If the prediction is wrong,
the same applies, but another entry is allocated in a ran-
domly chosen component using a longer global branch
history. In particular, each tagged entry features a 2-bit useful
counter (u) that decides whether an entry can be replaced
during allocation. u counters are periodically reset. We refer
the reader to [9] for a detailed description of how TAGE
operates.

3.2 Using TAGE to Predict Memory Dependencies

Upon detecting a memory order violation, a TAGE entry
is allocated for the faulting load if there was no hit at
prediction time. As a first step, because hitting in a tagged
table is sufficient to indicate whether an instruction has a
memory dependency or not, the fields in the entry do not
need to be explicitly set to specific values. The exception is
the u bit which is set to 1, as we use to it control whether a
prediction is actually used or not.

3.2.1 Forgetting Predictions
Moreover, to perform well, existing memory dependency
predictors [2], [4] are able to forget predictions to mitigate
the fact that entries are allocated on ordering faults, but not
updated when there is no dependency. The same behavior
can be emulated by using the u counter to control prediction,
i.e., if there is a match and u is not zero, a memory depen-
dency prediction is made. However, if it is 0, no prediction is

IEEE COMPUTER ARCHITECTURE LETTERS, VOL XX, NO. XX, X 2016

made. Since u counters are periodically reset, this allows the
predictor to forget predictions without changing circuitry.
However, the interval at which u counters are reset is tuned
for branch prediction and is quite high in [9] (reset every
512K update), whereas the interval yielding the best perfor-
mance for Store Sets (in our framework) is much smaller
(clear every 30K dispatched memory instructions).

As a result, in addition to using the already present u
counters, we propose to monitor load instructions that were
predicted as dependent on a previous store during their life
in the pipeline. In particular, we record whether they read
their data from the SQ or from the cache. At Commit, if
data came from the cache (i.e., they were – most likely –
not dependent on an older store), the entry that provided
the prediction in TAGE is deallocated (the u bit and the tag
are reset) with a low probability that we fix to 1

256 , but that
could be set dynamically. In other words, we perform both
”active” and ”passive” update whereas previous schemes
preferred ”passive” update only.

4 LINKING CONSUMING LOADS WITH PRODUCER
STORES

4.1 Imprecise Linking – Unified Coarse
A first possibility is to implement 21264-like memory de-
pendency prediction using the TAGE branch predictor to
record the store-wait bits. That is, if a load is predicted to
have a memory dependency, it will wait for all older stores
to execute before executing. Loads that do not hit in TAGE
can issue as soon as their operands become ready. This
emulates an Alpha 21264-like predictor that considers path
information.

4.2 Precise Linking – Unified Precise
Our scheme performs a binary prediction for memory in-
structions. However, TAGE, as depicted in [9], implements
3-bit hysteresis counters in tagged tables. Therefore, we can
encode 8 different status for a load that hits in the branch
predictor.

First, we reserve the counter value 111b for loads that
should be marked as dependent on all older stores. Second,
we use other counter values to express which precise store
the load should be marked dependent on. For instance, if
the counter value is 011b, then the load should be marked
dependent on the 4th older store. This is achieved by im-
plementing a 7-entry FIFO of sequence numbers (around
70 bits) where stores are pushed at Dispatch. Similarly
to Store Sets, stores must explicitly check the queue and
invalidate themselves when they issue, however, since this
is a very small structure, the cost of doing so is limited. We
also point out that the same can be envisioned with 2-bit
hysteresis counters, although more loads would be marked
as dependent on all older stores.

5 EVALUATION METHODOLOGY

5.1 Simulation Infrastructure
We evaluate our unified prediction mechanism through
cycle-level simulation on the gem5 simulator [1], using the
ARMv8 (Aarch64) ISA. The different pipeline parameters

TABLE 1
Simulator configuration overview. *not pipelined.

Front End

L1I 8-way 32KB, 1 cycle, 128-entry ITLB; 32B
fetch buffer, 8-wide fetch; TAGE 1+12 compon. [9]
16K(base)+15K/3.75K(tagged) entry total 17 cycles
min. mis. penalty; 2-way 8K-entry BTB, 32-entry RAS;
8-wide decode; 8-wide rename

Execution

192-entry ROB, 60-entry IQ unified, 72/48-entry LQ/SQ (STLF
lat. 4 cycles), 235/235 INT/FP phys. regs; 8-issue, 4ALU(1c)
including 1Mul(3c) and 1Div(25c*), 3FP(3c) including 1FP-
Mul(3c) and 1FPDiv(11c*), 2Ld/Str, 1Str; Full bypass; 8-wide
retire

MemDep

1 – 8K-entry PC-indexed store-wait bitvector [4], cleared every
30K access
2 – 2K-SSID/1K LFST Store Sets, not rolled-back on squash [2],
cleared every 30K access
3 – TAGE branch predictor, u reset every 512K updates.
15K/3.75K tagged entries.

Caches

L1D 8-way 32KB, 4 cycles load-to-use, 64 MSHRs, 2 load
ports, 1 store port, 64-entry DTLB, Stride prefetcher (degree
1); Unified private L2 16-way 256KB, 12 cycles, 64 MSHRs, no
port constraints, Stream prefetcher (degree 1); Unified shared
L3 24-way 6MB, 21 cycles, 64 MSHRs, no port constraints,
Stream prefetcher (degree 1); All caches have 64B lines and
LRU replacement

Memory
Dual channel DDR4-2400 (17-17-17), 2 ranks/channel, 8
banks/rank, 8K row-buffer, tREFI 7.8us; Min. Read Lat.: 36
ns. Average: 75 ns.

0.9

1

1.1

1.2

1.3

1.4

1.5
IP

C
re

la
ti

ve
 t

o
 b

lin
d

 s
p

ec
u

la
ti

o
n

Alpha 21264-like Unified Coarse Unified Precise Store Sets

Fig. 3. Using the TAGE branch predictor to store memory dependency
information: IPC relative to blind speculation (loads never wait on older
stores to execute) for SPEC2006CPU benchmarks sensitive to MDP.

are depicted in Table 1. In particular, we model an aggres-
sive 8-wide pipeline clocked at 4GHz that is on par with
recent high performance (e.g., Intel’s) microarchitectures.

We simulated the SPEC CPU 2006 benchmark suite
under a full Linux operating system (3.16.0-rc6). GCC 4.9.3
(Linaro GCC 4.9-2015.01-3) was used to compile bench-
marks, except 416.gamess with GCC 4.7.3 (linaro-1.13.1-
4.7-2013.01-20130125). The baseline flags were: -static -
march=armv8-a -fno-strict-aliasing1. We uniformly gathered
10 checkpoints for each benchmark. For each checkpoint, we
first simulate 50M instructions to warmup the processor’s
caches and different predictors. Then, we collect statistics
for the next 100M committed instructions. Note that we
ignore benchmarks for which there is no difference between
blind speculation and all the different memory dependency
prediction schemes we consider.

6 EXPERIMENTAL RESULTS

Performance Figure 3 shows the relative IPC versus blind
speculation for our two unified schemes as well as the

1. 464.h264ref and 482.sphinx3 required the option -fsigned-char.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL XX, NO. XX, X 2016

Alpha 21264-like predictor and Store Sets, using the TAGE
predictor featuring 15K tagged entries. Generally speaking,
Unified Coarse has the same behavior as the 21264’s
predictor, with a noticeable improvement in povray, hinting
that explicit path information is beneficial to memory
dependency prediction. By being able to precisely identify
producing stores, Unified Precise reaches the same level of
performance as Store Sets and even slightly outperforms
it in povray. Regardless, one has to remember that these
numbers are obtained at close to zero storage overhead,
while even the 21264-like predictor requires 1KB of storage.
Due to lack of space, we do not show results for a TAGE
predictor that has only 3.75K tagged entries (but still a
16K-entry bimodal table), especially as speedups are similar.

Table Occupancy and Impact on Branch Prediction
Accuracy Figure 4 shows, for each of the 290 checkpoints,
the average percentage of tagged entries containing a mem-
ory dependency prediction (sampled every 1K updates),
for 15K, and 3.75K tagged entries over 12 components. We
observed that 90% of the checkpoints require 18% or less of
the tagged tables for MDP in the two configurations (10%
or less for the large predictor). Note that the occupancy is
computed for tagged tables only, i.e., the 16K entries of the
bimodal component of TAGE are all dedicated to branches.
Therefore, in most cases, the impact of unifying branch
and memory dependency prediction on branch prediction
accuracy is very limited. Specifically, for 15K and 3.75K
tagged entries respectively, we found that blind speculation
has 5.46 and 6.10 average committed (only mispredictions
on the correct path are counted) MPKI, Store Sets has 5.45
and 6.09 average committed MPKI, and Unified Precise has
5.45 and 6.12 average committed MPKI.

7 COMPLEXITY INCREASE IN THE BRANCH PRE-
DICTOR

Although we do not require additional storage, loads now
access and update the branch predictor. However, in the
context of fixed-length instruction sets, this can be ad-
dressed by reading one prediction for each instruction of the
fetch block using a single access, by grouping predictions
of contiguous instructions in contiguous predictor entries,
as in the Alpha EV8 branch predictor [10]. In fact, modern
superscalar RISC processors may already perform branch
prediction in this fashion as it is a practical way to predict
branches without knowing which instructions are branches,
and how many there are. For variable-length instruction
set, supporting multiple accesses per cycle is more complex
to implement but can be achieved by grouping a statically
defined number of predictions in a single entry, as proposed
by Perais and Seznec for value prediction [8].

8 CONCLUSION & FUTURE WORK

The refinement of modern branch predictors makes them
suitable for predicting outcomes different from “branch
taken” and “branch not taken”. In this letter, we depicted
how the TAGE branch predictor could be adapted to per-
form memory dependency prediction at almost zero stor-
age overhead, achieving performance on par with Store

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

140

160

180

%
 o

f
ch

ec
kp

o
in

ts
 (

cu
m

u
la

te
d

, 2
9

0
to

ta
l)

o

f
ch

ec
kp

o
in

ts
 (

2
9

0
 t

o
ta

l)

% of tagged entries

15K Tagged entries 3.75K Tagged entries

Fig. 4. Percentage of TAGE tagged entries dedicated to MDP (290
checkpoints total).

Sets [2]. Future work should aim to refine the unification
of MDP and branch prediction, specifically regarding the
TAGE update and allocation policy. Similarly, future work
should consider unifying other speculation mechanisms
(e.g., criticality-prediction, hit-miss prediction, etc.) with
branch prediction.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Aug.
2011.

[2] G. Z. Chrysos and J. S. Emer. Memory dependence prediction
using store sets. In Proceedings of the International Symposium on
Computer Architecture, pages 142–153, 1998.

[3] D. A. Jiménez and C. Lin. Dynamic branch prediction with
perceptrons. In Proceedings of the International Symposium on High-
Performance Computer Architecture,, pages 197–206, 2001.

[4] R. E. Kessler. The alpha 21264 microprocessor. IEEE Micro,
19(2):24–36, 1999.

[5] A. Moshovos. Memory dependence prediction. PhD thesis, University
of Wisconsin-Madison, 1998.

[6] A. Moshovos and G. S. Sohi. Streamlining inter-operation memory
communication via data dependence prediction. In Proceedings
of the International symposium on Microarchitecture, pages 235–245,
1997.

[7] A. Moshovos and G. S. Sohi. Read-after-read memory dependence
prediction. In Proceedings of the International Symposium on Microar-
chitecture, pages 177–185, 1999.

[8] A. Perais and A. Seznec. Bebop: A cost effective predictor in-
frastructure for superscalar value prediction. In Proceedings of the
International Symposium on High Performance Computer Architecture,
pages 13–25, 2015.

[9] A. Seznec. A new case for the tage branch predictor. In Proceed-
ings of International Symposium on Microarchitecture, pages 117–127,
2011.

[10] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design tradeoffs
for the alpha EV8 conditional branch predictor. In Proceedings of
the International Symposium on Computer Architecture, pages 295–
306, 2002.

[11] T. Sha, M. M. Martin, and A. Roth. Nosq: Store-load communi-
cation without a store queue. In Proceedings of the International
Symposium on Microarchitecture, pages 285–296, 2006.

[12] S. Subramaniam and G. H. Loh. Fire-and-forget: Load/store
scheduling with no store queue at all. In Proceedings of the
international symposium on Microarchitecture, pages 273–284, 2006.

[13] S. Subramaniam and G. H. Loh. Store vectors for scalable memory
dependence prediction and scheduling. In Proceedings of the
International Symposium on High-Performance Computer Architecture,
pages 65–76, 2006.

[14] G. S. Tyson and T. M. Austin. Improving the accuracy and per-
formance of memory communication through renaming. In Pro-
ceedings of the International Symposium on Microarchitecture, pages
218–227, 1997.

