A GPU-Based Enhanced Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC Cloud

Abstract : In this paper, we consider power-aware task scheduling (PATS) in HPC clouds. Users request virtual machines (VMs) to execute their tasks. Each task is executed on one single VM, and requires a fixed number of cores (i.e., processors), computing power (million instructions per second - MIPS) of each core, a fixed start time and non-preemption in a duration. Each physical machine has maximum capacity resources on processors (cores); each core has limited computing power. The energy consumption of each placement is measured for cost calculating purposes. The power consumption of a physical machine is in a linear relationship with its CPU utilization. We want to minimize the total energy consumption of the placements of tasks. We propose here a genetic algorithm (GA) to solve the PATS problem. The GA is developed with two versions: (1) BKGPUGA, which is an adaptively implemented using NVIDIA’s Compute Unified Device Architecture (CUDA) framework; and (2) SGA, which is a serial GA version on CPU. The experimental results show the BKGPUGA program that executed on a single NVIDIA® TESLATM M2090 GPU (512 cores) card obtains significant speedups in comparing to the SGA program executing on Intel® XeonTM E5-2630 (2.3 GHz) on same input problem size. Both versions share the same GA’s parameters (e.g. number of generations, crossover and mutation probability, etc.) and a relative small (10-11) on difference of two finesses between BKGPUGA and SGA. Moreover, the proposed BKGPUGA program can handle large-scale task scheduling problems with scalable speedup under limitations of GPU device (e.g. GPU’s device memory, number of GPU cores, etc.).
Type de document :
Communication dans un congrès
David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Linawati; Made Sudiana Mahendra; Erich J. Neuhold; A Min Tjoa; Ilsun You; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-8407, pp.159-169, 2014, Information and Communication Technology. 〈10.1007/978-3-642-55032-4_16〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01397181
Contributeur : Hal Ifip <>
Soumis le : mardi 15 novembre 2016 - 15:24:55
Dernière modification le : mercredi 16 novembre 2016 - 01:04:11
Document(s) archivé(s) le : jeudi 16 mars 2017 - 17:06:47

Fichier

978-3-642-55032-4_16_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Nguyen Quang-Hung, Le Tan, Chiem Phat, Nam Thoai. A GPU-Based Enhanced Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC Cloud. David Hutchison; Takeo Kanade; Bernhard Steffen; Demetri Terzopoulos; Doug Tygar; Gerhard Weikum; Linawati; Made Sudiana Mahendra; Erich J. Neuhold; A Min Tjoa; Ilsun You; Josef Kittler; Jon M. Kleinberg; Alfred Kobsa; Friedemann Mattern; John C. Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan. 2nd Information and Communication Technology - EurAsia Conference (ICT-EurAsia), Apr 2014, Bali, Indonesia. Springer, Lecture Notes in Computer Science, LNCS-8407, pp.159-169, 2014, Information and Communication Technology. 〈10.1007/978-3-642-55032-4_16〉. 〈hal-01397181〉

Partager

Métriques

Consultations de la notice

69

Téléchargements de fichiers

64